http://acm.hdu.edu.cn/showproblem.php?pid=2767

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8605    Accepted Submission(s): 3063

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 
Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
题目大意:给一个有向图,问至少加几条边能使图成为强连通图。
题目分析:先用Tarjan缩点,然后统计每个强连通分量的入度与出度,统计入度为0的强连通分量的个数以及出度为0的强连通分量的个数,求两个数的最大值即可
【PS:注意强连通分量为1个时应进行特判,因为他的入度和出度都为0,但是不用加边就已经是强连通图了】
 //Wannafly挑战赛14 C https://www.nowcoder.com/acm/contest/81/C
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int maxn=;
struct edge{
int from;
int to;
int next;
}EDGE[maxn];
vector<int>vc[maxn];
int head[maxn],dfn[maxn],vis[maxn],low[maxn],col[maxn],in[maxn],out[maxn],en[maxn],stk[maxn];//各个变量的意义可参照上篇博客
int edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
void add(int x,int y)
{
EDGE[edge_cnt].from=x;
EDGE[edge_cnt].to=y;
EDGE[edge_cnt].next=head[x];
head[x]=edge_cnt++;
}
void Tarjan(int u)
{
low[u]=dfn[u]=++tot1;//注意tot1的初值必须是1【因为dfn必须为正数】,所以这里使用++tot1而不用tot1++;
vis[u]=;
stk[++tot2]=u;
for(int i = head[u]; i != - ; i = EDGE[i].next)
{
if(!dfn[EDGE[i].to]){
Tarjan(EDGE[i].to);
low[u]=min(low[u],low[EDGE[i].to]);
}
else if(vis[EDGE[i].to]){
low[u]=min(low[u],low[EDGE[i].to]);
}
}
if(low[u]==dfn[u]){
int xx;
scc_cnt++;
do{
xx=stk[tot2--];
vc[scc_cnt].push_back(xx);
col[xx]=scc_cnt;
vis[xx]=;
}while(xx!=u);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
scc_cnt=;
int n,m;
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
memset(stk,,sizeof(stk));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(col,,sizeof(col));
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i = ; i <= n; i++)
{
if(!dfn[i])Tarjan(i);
}
for(int i = ; i < edge_cnt ; i++)
{
if(col[EDGE[i].from]!=col[EDGE[i].to])
{
in[col[EDGE[i].to]]++;//缩点
out[col[EDGE[i].from]]++;
}
}
int sum1=,sum2=;
for(int i = ; i <= scc_cnt ; i++)
{
if(!in[i])
sum1++;
if(!out[i])
sum2++;
}
int mmax=max(sum1,sum2);
if(scc_cnt!=)
cout << mmax << endl;
else
cout << "" <<endl;
for(int i = ; i <= scc_cnt ; i++)
vc[i].clear();
}
return ;
}
/*4 5
1 3
2 4
4 2
1 4
2 1*/

【HDOJ2767】【Tarjan缩点】的更多相关文章

  1. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  2. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  3. King's Quest —— POJ1904(ZOJ2470)Tarjan缩点

    King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...

  4. 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率

    2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1638  Solved: 433[Submit][Statu ...

  5. 【BZOJ-1924】所驼门王的宝藏 Tarjan缩点(+拓扑排序) + 拓扑图DP

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 318[Submit][Stat ...

  6. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  7. BZOJ 1051 受欢迎的牛(Tarjan缩点)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4573  Solved: 2428 [Submit][S ...

  8. HDU4612+Tarjan缩点+BFS求树的直径

    tarjan+缩点+树的直径题意:给出n个点和m条边的图,存在重边,问加一条边以后,剩下的桥的数量最少为多少.先tarjan缩点,再在这棵树上求直径.加的边即是连接这条直径的两端. /* tarjan ...

  9. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

随机推荐

  1. 基础数据类型的坑和集合及深浅copy

    一.基础数据类型的坑: 元组: 如果一个元组中,只有一个元素,且没有逗号,则该"元组"与里面的数据的类型相同. # 只有一个数据,且没有逗号的情况: print(tu1,type( ...

  2. PHP中的Trait方法

    <?php /* * 自 PHP 5.4.0 起,PHP 实现了一种代码复用的方法,称为 trait. * Trait 是为类似 PHP 的单继承语言而准备的一种代码复用机制. * Trait ...

  3. [AtCoder2558]Many Moves

    Problem 共有n个格子,有两个硬币在a,b格子上,还有q个操作. 每个操作给你一个编号,要求将一个硬币移到这个编号上. 问你硬币移动的总距离最小值. Solution O(n^3):DP[i][ ...

  4. Android知识补充(Android学习笔记)

    Android知识补充 ●国际化 所谓的国际化,就是指软件在开发时就应该具备支持多种语言和地区的功能,也就是说开发的软件能同时应对不同国家和地区的用户访问,并针对不同国家和地区的用户,提供相应的.符合 ...

  5. 《图解TCP/IP》读书笔记(转)

    reference: https://www.cnblogs.com/edisonchou/p/5987827.html 一.国际惯例:书托 这是一本图文并茂的网络管理技术书籍,旨在让广大读者理解TC ...

  6. [PyImageSearch] Ubuntu16.04 使用OpenCV和python识别信用卡 OCR

    在今天的博文中,我将演示如何使用模板匹配作为OCR的一种形式来帮助我们创建一个自动识别信用卡并从图像中提取相关信用卡数位的解决方案. 今天的博文分为三部分. 在第一部分中,我们将讨论OCR-A字体,这 ...

  7. 循环神经网络-极其详细的推导BPTT

    首先明确一下,本文需要对RNN有一定的了解,而且本文只针对标准的网络结构,旨在彻底搞清楚反向传播和BPTT. 反向传播形象描述 什么是反向传播?传播的是什么?传播的是误差,根据误差进行调整. 举个例子 ...

  8. AMR11A - Magic Grid

    Thanks a lot for helping Harry Potter in finding the Sorcerer's Stone of Immortality in October. Did ...

  9. 了解下webpack的几个命令

    [ webpack3.0.0刚刚出来  所以文章是跟着低版本 教程 操作熟悉  结果好多对不上喔] 六:了解下webpack的几个命令 webpack         // 最基本的启动webpack ...

  10. 去掉HTML标记 .

    ///   <summary>     ///   去除HTML标记     ///   </summary>     ///   <param   name=" ...