spoj gss1 gss3
spoj gss系列=最大字段和套餐
gss1就是gss3的无单点修改版
有区间查询和单点修改,考虑用线段树维护
我们要维护区间权值和\(s\),区间最大前缀和\(xl\)和最大后缀和\(xr\),以及最大子段和\(x\)
在pushup的时候,这样维护 代码里有
\]
其实是懒得写文字
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define lc (o<<1)
#define rc ((o<<1)|1)
#define mid ((l+r)>>1)
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=50000+10,inf=999999999;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct sgmt
{
LL s,xl,xr,x;
}a[N<<2];
il void psup(int o)
{
a[o].s=a[lc].s+a[rc].s;
a[o].xl=max(a[lc].xl,a[lc].s+a[rc].xl);
a[o].xr=max(a[rc].xr,a[lc].xr+a[rc].s);
a[o].x=max(max(a[lc].x,a[rc].x),a[lc].xr+a[rc].xl);
}
il void bui(int o,int l,int r)
{
if(l==r) {a[o].s=a[o].xl=a[o].xr=a[o].x=rd();return;}
bui(lc,l,mid),bui(rc,mid+1,r);
psup(o);
}
il void modi(int o,int l,int r,int x,int y)
{
if(l==r) {a[o].s=a[o].xl=a[o].xr=a[o].x=y;return;}
if(x<=mid) modi(lc,l,mid,x,y);
else modi(rc,mid+1,r,x,y);
psup(o);
}
il sgmt quer(int o,int l,int r,int ll,int rr)
{
if(ll<=l&&r<=rr) return a[o];
if(rr<=mid) return quer(lc,l,mid,ll,rr);
else if(ll>mid) return quer(rc,mid+1,r,ll,rr);
else
{
sgmt an,aa,bb;
aa=quer(lc,l,mid,ll,mid),bb=quer(rc,mid+1,r,mid+1,rr);
an.s=aa.s+bb.s;
an.xl=max(aa.xl,aa.s+bb.xl);
an.xr=max(bb.xr,aa.xr+bb.s);
an.x=max(max(aa.x,bb.x),aa.xr+bb.xl);
return an;
}
}
int n,m;
int main()
{
n=rd();
bui(1,1,n);
m=rd();
while(m--)
{
int op=rd(),x=rd(),y=rd();
if(op==0) modi(1,1,n,x,y);
else printf("%lld\n",quer(1,1,n,x,y).x);
}
return 0;
}
spoj gss1 gss3的更多相关文章
- SPOJ GSS1 && GSS3 (无更新/更新单点,并询问区间最大连续和)
http://www.spoj.com/problems/GSS1/ 题意:无更新询问区间最大连续和. 做法:线段树每个节点维护sum[rt],maxsum[rt],lsum[rt],rsum[rt] ...
- SPOJ - GSS1&&GSS3
GSS1 #include<cstdio> #include<iostream> #define lc k<<1 #define rc k<<1|1 u ...
- SPOJ GSS1 & GSS3&挂了的GSS5
线段树然后yy一下,搞一搞. GSS1: 题意:求最大区间和. #include <cstdio> #include <algorithm> using namespace s ...
- SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)
Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...
- [题解] SPOJ GSS1 - Can you answer these queries I
[题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...
- GSS系列(1)——GSS1&&GSS3
题意:询问一个区间内的最大连续子段和(GSS1),并且有单点修改的操作(GSS2). 思路:这个题目在老人家的大白鼠里出现过,不过那个是求两个下标,并且相同取更小值.——传的东西更多,判断也稍微繁琐一 ...
- SPOJ - GSS1 —— 线段树 (结点信息合并)
题目链接:https://vjudge.net/problem/SPOJ-GSS1 GSS1 - Can you answer these queries I #tree You are given ...
- SPOJ GSS1 Can you answer these queries I[线段树]
Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...
- SPOJ GSS1 Can you answer these queries I
Time Limit: 115MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description You are g ...
随机推荐
- 下载 Internet Explorer 11(脱机安装程序)
https://support.microsoft.com/zh-cn/help/18520/download-internet-explorer-11-offline-installer 语言 本 ...
- BZOJ1299[LLH邀请赛]巧克力棒——Nim游戏+搜索
题目描述 TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. 他们以最佳策略一共进行了10轮(每次一盒). ...
- LightOJ - 1265 (概率)
题意: 1.两只老虎相遇 就互相残杀 2.老虎与鹿相遇 鹿死 3.老虎与人相遇 人死 4.人与鹿相遇 鹿死 5.鹿与鹿相遇 无果 求人活的概率 解析:如果老虎为0 则人活得概率为1 ...
- MT【62】柯西求三角值域
求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...
- MT【49】四次函数求最值
已知$f(x)=(1-x^2)(x^2+ax+b)$的图像关于x=3对称,求$f(x)$的最大值. 解答:显然$-1,7;1,5$是$f(x)=0$的根.故$(x^2+ax+b)=(x-5)(x-7) ...
- 洛谷P2054 [AHOI2005]洗牌(扩展欧几里德)
洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后 ...
- 自学Zabbix3.12.5-动作Action-Condition配置
点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 3.12.5 自学Zabbix3.12.5-动作Action-Condition配置 报警,肯定是 ...
- 【BZOJ1064】【NOI2008】假面舞会(图论,搜索)
题面 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一个自己喜欢的面 具.每个面具都有一个编号 ...
- [luogu3979][bzoj3083]遥远的国度
[luogu传送门] [bzoj传送门] 题目描述 zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcww ...
- K8s核心概念详解
kubernetes(通常简称为K8S),是一个用于管理在容器中运行的应用的容器编排工具. Kubernetes不仅有你所需要的用来支持复杂容器应用的所有东西,它还是市面上最方便开发和运维的框架. K ...