题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。Output输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。Sample Input

2 1
8 4
4 7

Sample Output

0
1
0 题解:威佐夫博弈 详细请看:https://baike.baidu.com/item/%E5%A8%81%E4%BD%90%E5%A4%AB%E5%8D%9A%E5%BC%88/19858256?fr=aladdin
威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。
两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618...因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,b = aj + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
 #include <iostream>
#include <algorithm>
using namespace std;
int main()
{
std::ios::sync_with_stdio(false);
int n,m;
double k=(sqrt(5.0)+1.0)/2.0;
while(cin>>n>>m){
if(n<m) swap(n,m);
int d=n-m;
n=(int)d*k;
if(n==m) cout<<<<endl;
else cout<<<<endl;
}
return ;
}

HDU 1527 取石子游戏 (威佐夫博弈)的更多相关文章

  1. HDU 1527 取石子游戏(威佐夫博弈)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  2. nim3取石子游戏 (威佐夫博弈)

    http://www.cnblogs.com/jackge/archive/2013/04/22/3034968.html 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有 ...

  3. 洛谷P2252 取石子游戏(威佐夫博弈)

    题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  4. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. P2252 取石子游戏 威佐夫博弈

    $ \color{#0066ff}{ 题目描述 }$ 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 ...

  6. POJ 1067 取石子游戏 威佐夫博弈

    威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 我们用(ak,bk)(ak ≤ bk ,k= ...

  7. POJ1067 取石子游戏 威佐夫博弈 博弈论

    http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可 ...

  8. 题解报告:hdu 1527 取石子游戏(威佐夫博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石 ...

  9. HDU 1527 取石子游戏(威佐夫博弈)

    基础威佐夫博弈,判断奇异局势即可,判断方式为k为两数之差绝对值,(sqrt(5) + 1) / 2 * k若等于两数小者则为奇异局势,也就是必败态. #include<stdio.h> # ...

随机推荐

  1. android下的样式

    android中控件,假如我们把样式都写死在控件的配置文件上的话.一旦改动可谓牵一发而动千军.那么我们能够把样式写在style.xml文件里.然后引用,在API14以上版本号. 该文件位于values ...

  2. 多线程2.md

    # 多线程  VS 多进程 - 程序:一堆代码以文本形式存入一个文档 - 进程: 程序运行的一个状态 - 包含地址空间.内存.数据栈等 - 每个进程由自己完全独立的运行环境,多进程共享数据是一个问题 ...

  3. JavaScript基础学习2

    /* 1.把函数作为参数.匿名函数作为参数传递到函数 */ function dogEat(food) { console.log("dog eat " + food); } fu ...

  4. c 字符数组与字符串

    char a[]="abc"; printf( char str[]="abc"; int size = sizeof(str)/sizeof(char); p ...

  5. histogram 和 bar plot的区别

    最本质的区别是这样的:histogram用来描述的是numerical变量,而bar plot用来描述的是categorical类型的变量.统计学当中关于变量的分类 这可以从它们的图形上面看到: hi ...

  6. Hybrid设计--账号体系的建设

    前后端分离:开发效率高,没有SEO 现在是重客户端设计:交互和业务逻辑是前端来写,适合做前后端分离.对前端更友好,提高了效率. 传统模式开发:整个业务逻辑是server端写,不适合做前后端分离.ser ...

  7. 读书笔记_Effective_C++_条款三:尽可能使用const

    const是常量的意思,它可以定义一个不可改变的量,主要用于以下几个地方: 1. 修饰变量,使之不可改变 举个例子: const int var = 3; 此时var的值就不能改变了.也正是因为con ...

  8. Ecshop 表结构 字段说明

    ecs_account_log 用户帐号情况记录表,包括资金和积分等 log_id mediumint 自增ID号user_id mediumint 用户登录后保存在session中的id号,跟use ...

  9. Browsersync结合gulp和nodemon实现express全栈自动刷新

    Browsersync能让浏览器实时.快速响应你的文件更改(html.js.css.sass.less等)并自动刷新页面.更重要的是 Browsersync可以同时在PC.平板.手机等设备下进项调试. ...

  10. hbase-java-api001

    package api; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfig ...