深度学习课程笔记(一)CNN 解析篇

  

  相关资料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html

  首先提到 Why CNN for Image ?

  

  

  

  综合上述三个特点,我们可以看到图像识别有如下的特色:

  

  

  ===================================  分割线  =======================================================

  以上就是整体上来感受下深度神经网络,接下来我们仔细分析下每一个部件:

  1. Convolution Layer 

  所谓卷积层,就是将两个矩阵进行卷积操作,这里的两个矩阵分别是指 卷积核(filter)每一个与filter相同大小的图像区域。这里的卷积操作就是 点成(矩阵对应元素相乘)。

  然后没执行一次这样的操作,就滑动一次filter,然后进行下一个区域的卷积操作,直至整幅图像被处理完毕。滑动的幅度,称为stride (步长)。如下图所示:

  

  然后再用另一组 filter 对该图像进行类似的处理。一张图像可以用多个卷积核来进行处理。上面提到的图像是 gray image,而对于彩色图像来说,是三个通道的。这个没有关系,我们将三个 filter 作为一组,分别对三个 channel 进行卷积,就可以了。如下图所示:

  

  2. Pooling Layer: 

  所谓的池化层,就是对得到的 feature map 进行降采样处理,常见的有,mean, max pooling operation 等。即:在一个区域内,如:2*2 的区域,max pooling 就是选择一个 max value 来代表这个区域,其余的直接扔掉。mean 就是取这些 value 的平均值来代替这些。当然也可以同时进行 max 和 mean pooling 操作,来完成降采样的过程。

  

  需要说明的是,max pooling 其实并不是必须的,如:在AlphaGo 中,使用的网络结构并没有使用 max pooling layer,因为使用了这个层,就会丢失一定的信息,而实际上 棋盘丢失了某些信息,结果是无法想象的。因为这可能会导致不同的局面。。。这是李宏毅老师的解释。。。但是,我觉得,这只是整个分辨率降低了而已,没有那么大的影响吧???如果有小伙伴知道更详细的答案,请不吝赐教。

  3. Fully Connected Layer: 

  全连接层 也是常见的 CNN 组件,一般用来输出一组向量。而 fc layer 和 convolutional layer 可以看做是类似的操作,为何这么说呢?且看下图:

  

  上图中,我们将 filter 中不同的 weight 设置为不同的颜色,在进行卷积操作的时候,我们进行对应元素点乘操作,从而得到 3 。我们将对应图像区域中的元素标上标号可以看出,我们这里仅仅和 9 个输入元素进行了连接,而不是所有的元素。所以,这里 convolutional layer 是 sparse connected。同时,在移动之后的卷积操作也是类似,而且这两个过程是共享权重的,都分享了同一个 filter 1. 这样就可以降低参数的数量,使得训练和测试都可以尽量快速的执行。

  

  这里还有一个比较迷糊人的问题是,卷积层 出来的 feature map 是一个立方体矩阵,而 fc layer 处理的是 vector,这两者之间是怎么接起来的呢?看下图:

  

  是的,你没有看错,两者之间有一个 flatten 的操作,即:将 feature map 按照每一个 map 展开,然后拼接在一起,构成一个大的 vector,再进行处理。整个过程如下所示:

  

  4. 激活层:

  常见的激活函数,有 sigmoid, ReLU, PReLU 等等。这些非线性函数被引入到 CNN 当中来,使得该模型具有非线性拟合能力。从而,可以执行更加复杂多样的任务。

  ==========================================  分割线  =================================================

  CNN 常见的应用除了在图像领域之外,还有语音和自然语言领域。你可能比较纳闷,CNN 不是专门用来处理图像的吗?

  宏观的来看,这只是一个执行 weighting operation 的网络,是可以处理任何 matrix 形式的东西的。例如:将语音和文本转化为 matrix 的形式,就可以利用 CNN 来进行特征的学习,从而完成后续的研究任务,像语音识别,等等。

  

  

========================  完毕  ==============================

  基础的图像识别的例子 ------ pytorch 版本:

  

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable # Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs) class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10) def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x) model = Net()
if args.cuda:
model.cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0])) def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset))) for epoch in range(1, args.epochs + 1):
train(epoch)
test()

  

  

深度学习课程笔记(一)CNN 卷积神经网络的更多相关文章

  1. 深度学习课程笔记(十二) Matrix Capsule

    深度学习课程笔记(十二) Matrix Capsule with EM Routing  2018-02-02  21:21:09  Paper: https://openreview.net/pdf ...

  2. 深度学习课程笔记(十一)初探 Capsule Network

    深度学习课程笔记(十一)初探 Capsule Network  2018-02-01  15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai% ...

  3. 深度学习课程笔记(五)Ensemble

    深度学习课程笔记(五)Ensemble  2017.10.06 材料来自: 首先提到的是 Bagging 的方法: 我们可以利用这里的 Bagging 的方法,结合多个强分类器,来提升总的结果.例如: ...

  4. 深度学习课程笔记(四)Gradient Descent 梯度下降算法

    深度学习课程笔记(四)Gradient Descent 梯度下降算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...

  5. 深度学习课程笔记(三)Backpropagation 反向传播算法

    深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06  材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...

  6. 深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE

    深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 201 ...

  7. 深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning)

    深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can ...

  8. 深度学习课程笔记(十六)Recursive Neural Network

    深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtu ...

  9. 深度学习课程笔记(十五)Recurrent Neural Network

    深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Yout ...

随机推荐

  1. JavaScript--常用的输出方式

       1.alert("要输出的内容"); 在浏览器中弹出一个对话框,然后把要输出的内容展示出来    2.document.write("要输出的内容");  ...

  2. 1.python虚拟环境的安装-用以同时使用py2,py3

    第一步:安装环境支持[linux下在前加sudo] http://www.lfd.uci.edu/~gohlke/pythonlibs/#pycurl pip install virtualenv 第 ...

  3. 设计模式之State(状态)(转)

    State的定义: 不同的状态,不同的行为;或者说,每个状态有着相应的行为. 何时使用? State模式在实际使用中比较多,适合"状态的切换".因为我们经常会使用If elseif ...

  4. linux下postgresql的连接数配置

    1.查询当前连接数: select count(*) from pg_stat_activity; 2.查询最大连接数 show max_connections; 3.修改最大连接数 SHOW con ...

  5. 开始Nginx的SSL模块

    nginx: [emerg] the "ssl" parameter requires ngx_http_ssl_module in /usr/local/nginx/conf/n ...

  6. jumpserver堡垒机安装

    1. 下载jumpserver cd /opt wget https://github.com/jumpserver/jumpserver/archive/master.zip unzip maste ...

  7. 怎样从外网访问内网Jupyter Notebook?

    本地安装了一个Jupyter Notebook,只能在局域网内访问,怎样从外网也能访问到本地的Jupyter Notebook呢?本文将介绍具体的实现步骤. 准备工作 安装并启动Jupyter Not ...

  8. win10系统jdk安装和环境变量配置

    新换电脑的原因,要重新安装jdk,完整记录一下安装过程 jdk版本用的1.7(公司默认版本) 这是jdk安装目录   更改为D:\jdk\java\jdk1.7 安装jre目录  更改为D:\jdk\ ...

  9. Q_DECL_OVERRIDE

    Q_DECL_OVERRIDE也就是c++的override # define Q_DECL_OVERRIDE override 在重写虚函数时会用到, 作用是防止写错虚函数: void keyPre ...

  10. 在nginx的http模块下面,一个server就可以看做一个站点,配置形式大概是这样的:

    http { index index.php index.htm index.html; server { server_name www.site1.com; location / { # [... ...