Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary
Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary
2017.03.08
Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.
There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:
1. 2-channel 2. Siamese 3. Pseu-siamese Network

1. Siamese Network :
This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.
2. Pseudo-siamese Network :
the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.
3. 2-channel network :
Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章
- 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks
论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...
- 【论文笔记】Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 [Introduction] 这篇 paper 是发表在 ...
- Convolutional Neural Networks from deep learning (assignment 1 from week 1)
Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...
- 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
随机推荐
- word2vector 资料
http://blog.csdn.net/garfielder007/article/details/51345201 https://cs224d.stanford.edu/lecture_note ...
- Rigid Frameworks (画图二分图规律 + DP + 数学组合容斥)
题意:方格n*m,然后对于每一个格子有3种画法1左对角线2右对角线3不画,求让图形稳定的画法有多少种? 思路:通过手画二分图可以发现当二分图联通时改图满足条件,然后我们对于一个dp[n][m]可以利用 ...
- cocos 搭建安卓环境
http://blog.csdn.net/yiye3376/article/details/42219889
- 大数据处理框架之Strom:认识storm
Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...
- 给定一个正整数,实现一个方法求出离该整数最近的大于自身的 换位数 <把一个整数各个数位进行全排列>
"""给定一个正整数,实现一个方法求出离该整数最近的大于自身的 换位数 -> 把一个整数各个数位进行全排列""" # 使用 permu ...
- 2017-2018-2 20165215 实验二 Java面向对象程序设计
20165215 实验二 Java面向对象程序设计 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:张家佳 学号:20165215 指导教师:娄嘉鹏 实验日期:2018年4月16日 ...
- Android获取全局Context的方法
Android获取全局Context的方法 Android--应用全局获取Context - 超宇的博客 - CSDN博客https://blog.csdn.net/chaoyu168/article ...
- 75.Java异常处理机制-手动抛出异常
package testDate; import java.io.File; import java.io.FileNotFoundException; public class TestReadFi ...
- 和風いろはちゃんイージー / Iroha and Haiku (ABC Edition) (水水)
题目链接:http://abc042.contest.atcoder.jp/tasks/abc042_a Time limit : 2sec / Memory limit : 256MB Score ...
- serving inference
1.确定要提供服务的inference的input,output,以及exporter的signature:(这里用classify的signature做例子,input为byte数组,output为 ...