Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary

2017.03.08

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network


1. Siamese Network :

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.



  

  

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章

  1. 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks

    论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  4. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  5. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  6. Convolutional Neural Networks from deep learning (assignment 1 from week 1)

    Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  9. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

随机推荐

  1. Keras 处理 不平衡的数据的分类问题 imbalance data 或者 highly skewed data

    处理不平衡的数据集的时候,可以使用对数据加权来提高数量较小类的被选中的概率,具体方式如下 fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1, ...

  2. 异常点/离群点检测算法——LOF

    http://blog.csdn.net/wangyibo0201/article/details/51705966 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异 ...

  3. uvalive 11865 Stream My Contest

    题意: 有一个网络中心,和许多个城市,网络中心以及城市之间有若干条边,这些边有两个属性,最大带宽和修建费用. 现在要用最多不超过C的费用修建网络,使得每个城市都有网络连接,最大化最小带宽. 带宽限制是 ...

  4. Extjs4前端开发代码规范参考

    准则:  一致性, 隔离与统一管理, 螺旋式重构改进, 消除重复, 借鉴现有方案 1.    保证系统实现的一致性,寻求一致性方案, 相同或相似功能尽量用统一模式处理: 2.    尽可能使用隔离技术 ...

  5. numpy元素级数组函数

    一元函数 abs, fabs 计算整数.浮点数或复数的绝对值.对于非复数值,可以使用更快的fabs. sqrt 计算各元素的平方根.相当于arr ** 0.5 sqare 计算各元素的平方.相当于ar ...

  6. python自定义方法处理日志文件

    从命令行界面拷贝的内容包含过个">>>",函数的作用是用正则把每两个">>>"之间的字符取出来,然后把包含“Tracebac ...

  7. 转:【专题十一】实现一个基于FTP协议的程序——文件上传下载器

    引言: 在这个专题将为大家揭开下FTP这个协议的面纱,其实学习知识和生活中的例子都是很相通的,就拿这个专题来说,要了解FTP协议然后根据FTP协议实现一个文件下载器,就和和追MM是差不多的过程的,相信 ...

  8. golang学习笔记10 beego api 用jwt验证auth2 token 获取解码信息

    golang学习笔记10 beego api 用jwt验证auth2 token 获取解码信息 Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放 ...

  9. rgferg

    dfgsdfg fdvgdsafg fgdfgdfg

  10. [转载]web服务器

    Web系统由客户端(浏览器)和服务器端两部分组成.Web系统架构也被称为B/S架构.最常见的Web服务器有Apache.IIS等,常用的浏览器有IE.Firefox.chrome等.当你想访问一个网页 ...