Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary

2017.03.08

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network


1. Siamese Network :

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.



  

  

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章

  1. 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks

    论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  4. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  5. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  6. Convolutional Neural Networks from deep learning (assignment 1 from week 1)

    Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  9. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

随机推荐

  1. SVM支撑向量机原理

    转自:http://blog.csdn.net/v_july_v/article/details/7624837 目录(?)[-] 支持向量机通俗导论理解SVM的三层境界 前言 第一层了解SVM 1分 ...

  2. 转:Http下载文件类 支技断点续传功能

    using System; using System.Collections.Generic; using System.Text; using System.IO; using System.Net ...

  3. vue-i18n国际化插件

    vue-i18n国际化插件 安装,到项目目录下执行:npm install vue-i18n 配置在src\main.js里面引入vue-i18n // 语言包插件import VueI18n fro ...

  4. idea 项目转 eclipse项目

    接到一个很紧急的活,我很着急,也很兴奋,打开邮件一看,有点懵逼.   idea项目.idea不熟啊,网上搜攻略.我做个总结,归根结底就是一句话.   下个idea,然后一步一步的安装好.   然后也是 ...

  5. java was started but exit code =-805306369

       打开STS 时报  java was started but exit code =-805306369这个错,一个页面. 原因我把STS里面的默认jdk换成了7.但是STS的ini文件里依赖的 ...

  6. kali linux DIY

    开启你的kali linux DIY之旅 感谢原博主的分享,真的非常非常受用! 更新源 首先 是kali2016.2更新源的问题,网上找了好久,都不是很满意.后来把kali 2016.2安装到实体机中 ...

  7. 原生态JDBC

    原生态JDBC JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API.JDBC是java访问数据库的标准规范,可以为不同的关系 ...

  8. Prometheus监控学习笔记之360基于Prometheus的在线服务监控实践

    0x00 初衷 最近参与的几个项目,无一例外对监控都有极强的要求,需要对项目中各组件进行详细监控,如服务端API的请求次数.响应时间.到达率.接口错误率.分布式存储中的集群IOPS.节点在线情况.偏移 ...

  9. mysql同步之otter/canal环境搭建完整详细版

    接上一篇mysql 5.7多源复制(用于生产库多主库合并到一个查询从库). 这一篇详细介绍otter/canal环境搭建以及当同步出现异常时如何排查.本文主要参考https://blog.csdn.n ...

  10. 3 字节的 UTF-8 序列的字节 3 无效 解决

    参考下列应该可以解决,笔者为3. 1.https://blog.csdn.net/hostel_2/article/details/51517361 2.https://blog.csdn.net/u ...