Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary

2017.03.08

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network


1. Siamese Network :

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.



  

  

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章

  1. 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks

    论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  4. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

    Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...

  5. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  6. Convolutional Neural Networks from deep learning (assignment 1 from week 1)

    Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  9. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

随机推荐

  1. 利用JavaCSV API来读写csv文件

    http://blog.csdn.net/loongshawn/article/details/53423121 http://javacsv.sourceforge.net/ 转载请注明来源-作者@ ...

  2. Another Meaning (KMP + DP)

    先用KMP重叠匹配求出各个匹配成功的尾串位置.然后利用DP去求,那转移方程应该是等于 上一个状态 (无法匹配新尾巴) 上一个状态 + 以本次匹配起点为结尾的状态(就是说有了新的位置) + 1 (单单一 ...

  3. Linux基础命令---tracepath追踪路由信息

    tracepath tracepath指令可以追踪数据到达目标主机的路由信息,同时还能够发现MTU值.它跟踪路径到目的地,沿着这条路径发现MTU.它使用UDP端口或一些随机端口.它类似于Tracero ...

  4. 转:[你必须知道的异步编程]——异步编程模型(APM)

    本专题概要: 引言 你知道APM吗? 你想知道如何使用异步编程模型编写代码吗? 使用委托也可以实现异步编程,你知道否? 小结 一.引言 在前面的C#基础知识系列中介绍了从C#1.0——C#4.0中一些 ...

  5. JetBrains WebStorm打开多个项目project的方法

    JetBrains WebStorm打开多个项目project的方法File-->Settings-->Directories点击右侧 + Add content root,选择目录后即可 ...

  6. js如何获取服务器端时间?

    用js做时间校正,获取本机时间,是存在bug的. 使用js也可获取到服务器时间,原理是使用 ajax请求,返回的头部信息就含有服务器端的时间信息,获取到就可以了.以下: 1.依赖jQuery 代码: ...

  7. centos安装angr

    1.angr环境 yum install -y python-dev libffi-dev build-essential virtualenvwrapper mkvirtualenv angr 问题 ...

  8. linux 二级域名设置

    首先,你的拥有一个有泛域名解析的顶级域名,例如: domain.com 其次,在 httpd.conf 中打开 mod_rewrite 之后,在 httpd.conf 的最后,添加以下内容: Rewr ...

  9. 一个讲课截屏 清明DAY2

    灰常混乱 放弃吧........ 不断做平方差公式 到i时,前面已经求出之前数字的逆元了 r是一个比i小的数 第四行×i,r 的逆元 BSGS 暴力枚举枚举到Φ(m)个

  10. log4j2笔记 #03# PatternLayout

    该类的目标是格式化LogEvent并返回(字符串)结果.结果的格式取决于具体的模式字符串(pattern string).这里的模式字符串与c语言中printf函数的转换模式非常相似.模式字符串由“转 ...