Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary
Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary
2017.03.08
Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly.
There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:
1. 2-channel 2. Siamese 3. Pseu-siamese Network
1. Siamese Network :
This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights.
2. Pseudo-siamese Network :
the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network.
3. 2-channel network :
Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches.
Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary的更多相关文章
- 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks
论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...
- 【论文笔记】Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 [Introduction] 这篇 paper 是发表在 ...
- Convolutional Neural Networks from deep learning (assignment 1 from week 1)
Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...
- 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
随机推荐
- Unicode字符需要几个字节来存储?
0)学习笔记: 我们常说的这句话“Unicode字符是2个字节”这句话有毛病 Unicode目前规划的总空间有17个平面, 0x0000---0x10FFFF,每个平面有 65536 个码点. Uni ...
- Ajax 知识
Ajax 为什么要有ajax技术? 传统的web应用,一个简单的操作就要加载整个页面.浪费资源. Ajax 即“Asynchronous Javascript And XML”(异步JavaS ...
- SQL 语法笔记
➪SQL ➪基本类型 char / varchar / int / smallint / numeric / real, double precision / float ➪数据定义 create t ...
- RTMP HLS HTTP 直播协议一次看个够
直播从2016年一路火到了2017年,如今要在自己的App里加入直播功能,只要找一个现成的SDK就行了,什么拍摄.美颜.推流,一条龙服务.不过作为直播身后最重要的部分:推流协议,很多人并不是很清楚.如 ...
- QRegExp 正则表达式详解
引言 正则表达式(regular expression)就是用一个“字符串”来描述一个特征,然后去验证另一个“字符串”是否符合这个特征.比如 表达式“ab+” 描述的特征是“一个 'a' 和 任意个 ...
- Eloquent JavaScript #11# The Document Object Model
索引 Notes js与html DOM 在DOM树中移动 在DOM中寻找元素 改变Document 创建节点 html元素属性 布局 style CSS选择器 动画 Exercises Build ...
- strpos 的正确使用方式
首先简单介绍下strpos函数: strpos函数是查找某个字符在字符串中的位置:这里需要明确这个函数的作用: 这个函数得到的是位置:如果存在:返回数字:否则返回的是false: 而很多时候我们拿这个 ...
- PHP中array_map与array_column之间的关系分析
array_map()与array_column()用法如下: array_map();将回调函数作用到给定数组的单元上array_column();快速实现:将二维数组转为一维数组 array_co ...
- mysql配置主从复制和常见问题
克隆192.168.138.130(主库),修改后的ip为192.168.138.130(从库),修改131机器的/etc/udev/rules.d/70-persistent-net.rules,将 ...
- python简说(八)random
import randomprint(random.randint(1,23))#随机整数l=[1,2,3,4]s='abcdefeg'print(random.choice(s))#随机选择一个元素 ...