n=40的01串,求有多少m=40的01串中包含它,包含的定义是存在子串有至多一个字符不相同

600组n=15的数据 15组n=40的数据,所以我们只能支持n^5的算法。

陷入两个比较有意思的坑:

1 如果手动构建fail树,建立两个并行的串,左串代表当前未使用那一个可以不相同的字符的名额,右串代表已经使用了这个名额,那么按照bfs m步的想法,左串可以通过“使用名额”到达右串,也可以通过“不使用名额”走一个fail,而右串一旦失配,只能在右串的对应位置进行fail。这样跑一遍矩阵乘法,复杂度是(2*n)^3

但是不对,因为假设右串失配了,可能距离一个点从左串跳过来已经过了很久了,那个名额已经可以再次使用了,所以它可以再跳回左串。这样就会导致我们失去一些答案。

2 如果插入n+1个串,代表原串,和原串第i个位置不同的串,这样点是n^3,那么矩阵乘法是n^6,还有一个logm的快速幂时间,复杂度会超

陷入了误区:快速幂一定比直接转移快。快速幂的快体现在将m转移到logm,但是二维矩阵的自乘是(点数^3)的,加一个快速幂的优化是从m(n*n)到logm(n*n*n)。

所以暴力插入n+1个串建树,暴力(n*n)^2的枚举边,跑m次转移。

L read() {L x;scanf("%lld" , &x) ; return x ; } ;

char s[50] ;

L c[40 * 40 + 5] ;
L a[40 * 40 + 5][40 * 40 + 5] ;
L b[40 * 40 + 5] ;
L n , m ; struct AC{
L next[40 * 40 + 5][2] , fail[40 * 40 + 5] , en[40 * 40 + 5] ;
L ro , to ;
L newnode() {
to++;
for(L i = 0 ; i < 2 ; i ++ ) next[to][i] = -1 ;
en[to] = 0 ;
return to ;
}
void init() {
to = -1 ;
ro = newnode() ;
}
void inse() {
L now = ro ;
for(L i = 1 ; i <= n ; i ++ ) {
if(next[now][s[i]-'0'] == -1) next[now][s[i]-'0'] = newnode();
now = next[now][s[i]-'0'];
}
en[now]++;
}
void build() {
queue<int>q;
fail[ro]=ro;
for(L i=0;i<2;i++){
if(next[ro][i] == -1) next[ro][i]=ro;
else {
fail[next[ro][i]]=ro;
q.push(next[ro][i]);
}
}
while(!q.empty()){
L now=q.front();q.pop();
for(L i=0;i<2;i++){
if(next[now][i]==-1)next[now][i] = next[fail[now]][i] ;
else {
fail[next[now][i]] = next[fail[now]][i];
q.push(next[now][i]);
}
}
}
}
void gao() {
inse() ;
for(int i = 1 ; i <= n ; i ++ ) {
s[i] = '0' + ((s[i] - '0') ^ 1) ;
inse();
s[i] = '0' + ((s[i] - '0') ^ 1) ;
}
build() ;
for(int i = 0 ; i <= to ; i ++ ) {
for(int j = 0 ; j <= 1 ; j ++ ) {
int v = next[i][j];
if(en[i] == 0)
a[i][v] ++ ;
}
}
for(int i = 0 ; i <= to ; i ++ ) {
if(en[i] != 0) a[i][i] += 2 ;
}
b[0] = 1 ;
for(int i = 1 ; i <= m ; i ++ ) {
memset(c, 0 , sizeof(c)) ;
for(int u = 0 ; u <= to ; u ++ ) {
for(int v = 0 ; v <= to ; v ++ ) {
c[v] += b[u] * a[u][v] ;
}
}
for(int j = 0 ; j <= to ; j ++ )
b[j] = c[j] ;
}
L ans = 0 ;
for(int i = 0 ; i <= to ; i ++ ) {
if(en[i] != 0) ans += b[i] ;
}
cout << ans << endl ;
} }ac; int main () { L t = read() ; while(t -- ) {
n = read() ; m = read() ;
scanf("%s" , s+1) ;
memset(a,0,sizeof(a)) ;
memset(b,0,sizeof(b)) ;
ac.init() ;
ac.gao() ;
}
}

  

2018 ICPC北京 H ac自动机的更多相关文章

  1. 2018 Arab Collegiate Programming Contest (ACPC 2018) E - Exciting Menus AC自动机

    E - Exciting Menus 建个AC自动机求个fail指针就好啦. #include<bits/stdc++.h> #define LL long long #define fi ...

  2. hihoCoder #1871 : Heshen's Account Book-字符串暴力模拟 自闭(getline()函数) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction B) 2018 ICPC 北京区域赛现场赛B

    P2 : Heshen's Account Book Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Description H ...

  3. hihoCoder #1870 : Jin Yong’s Wukong Ranking List-闭包传递(递归) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction A) 2018 ICPC 北京区域赛现场赛A

    P1 : Jin Yong’s Wukong Ranking List Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Desc ...

  4. 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元

    http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...

  5. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

  6. 2019牛客多校八 H. How Many Schemes (AC自动机,树链剖分)

    大意: 给定树, 每条边有一个字符集合, 给定$m$个模式串, $q$个询问$(u,v)$, 对于路径$(u,v)$中的所有边, 每条边从对应字符集合中取一个字符, 得到一个串$s$, 求$s$至少包 ...

  7. 2018 ACM-ICPC 北京赛区小结 @ Reconquista

    Statistics TYPE: Onsite Contest NAME: 2018 - ICPC Regional - Asia EC - Beijing PLAT: Hihocoder TIME: ...

  8. 2016 年青岛网络赛---Family View(AC自动机)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5880 Problem Description Steam is a digital distribut ...

  9. 【HDU2825】Wireless Password (AC自动机+状压DP)

    Wireless Password Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u De ...

随机推荐

  1. java基础03变量和基本数据类型

    package cn.bdqn.test; /** * * @author 小豆腐 * * 变量:会变化的量?? * 一个数据在内存中存储空间的表示!在运行期间可以动态改变! * * 关键字:在jav ...

  2. HTTP API 设计指南(转)

    add by zhj (2014-12-16): 今天才知道,原画HeroKu是国外一个很有名的PaaS提供商,公司很可能会将app迁移到他们那里 英文原文: HTTP API Design Guid ...

  3. Linux下的内核模块机制

    2017-06-20 Linux的内核模块机制允许开发者动态的向内核添加功能,我们常见的文件系统.驱动程序等都可以通过模块的方式添加到内核而无需对内核重新编译,这在很大程度上减少了操作的复杂度.模块机 ...

  4. 6.Git代码回滚

    1.代码修改并提交 我们已经成功地添加并提交了一个helloWorld.txt文件,现在,是时候继续工作了. 于是,我们继续修改helloWorld.txt文件,改成如下内容: $ vi helloW ...

  5. centos7配置IP地址

    有关于centos7获取IP地址的方法主要有两种,1:动态获取ip:2:设置静态IP地址 在配置网络之前我们先要知道centos的网卡名称是什么,centos7不再使用ifconfig命令,可通过命令 ...

  6. Java时间处理类SimpleDateFormat的parse和format方法的正确使用

    Java中怎么才能把日期转换成想要的格式呢,或把字符串转换成一定格式的日期,如把数据库中的日期或时间转换成自己想要的格式,JAVA中提供了SimpleDateFormat类可以实现. SimpleDa ...

  7. 数据结构-平衡二叉树 旋转过程平衡因子分析 c和java代码实现对比

    平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且 ...

  8. python全栈开发从入门到放弃之socket并发编程多线程GIL

    一 介绍 ''' 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple nati ...

  9. sql 自定义函数返回中文,数字,英文

    --提取数字IF OBJECT_ID('DBO.GET_NUMBER2') IS NOT NULLDROP FUNCTION DBO.GET_NUMBER2GOCREATE FUNCTION DBO. ...

  10. 给idea配置默认的java jdk

    1. 2. 3.选择安装的jdk的路径. 4.