(1)剑指Offer之斐波那契数列问题和跳台阶问题
一 斐波那契数列
题目描述:
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。
n<=39
问题分析:
可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有一个很大的问题,那就是递归大量的重复计算会导致内存溢出。另外可以使用迭代法,用fn1和fn2保存计算过程中的结果,并复用起来。下面我会把两个方法示例代码都给出来并给出两个方法的运行时间对比。
示例代码:
采用迭代法:
int Fibonacci(int number) {
if (number <= 0) {
return 0;
}
if (number == 1 || number == 2) {
return 1;
}
int first = 1, second = 1, third = 0;
for (int i = 3; i <= number; i++) {
third = first + second;
first = second;
second = third;
}
return third;
}
采用递归:
public int Fibonacci(int n) {
if (n <= 0) {
return 0;
}
if (n == 1||n==2) {
return 1;
}
return Fibonacci(n - 2) + Fibonacci(n - 1);
}
运行时间对比:
假设n为40我们分别使用迭代法和递归法计算,计算结果如下:
1. 迭代法
2. 递归法

二 跳台阶问题
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析:
正常分析法:
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a,b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
找规律分析法:
f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5, 可以总结出f(n) = f(n-1) + f(n-2)的规律。
但是为什么会出现这样的规律呢?假设现在6个台阶,我们可以从第5跳一步到6,这样的话有多少种方案跳到5就有多少种方案跳到6,另外我们也可以从4跳两步跳到6,跳到4有多少种方案的话,就有多少种方案跳到6,其他的不能从3跳到6什么的啦,所以最后就是f(6) = f(5) + f(4);这样子也很好理解变态跳台阶的问题了。
所以这道题其实就是斐波那契数列的问题。
代码只需要在上一题的代码稍做修改即可。和上一题唯一不同的就是这一题的初始元素变为 1 2 3 5 8…..而上一题为1 1 2 3 5 …….。另外这一题也可以用递归做,但是递归效率太低,所以我这里只给出了迭代方式的代码。
示例代码:
int jumpFloor(int number) {
if (number <= 0) {
return 0;
}
if (number == 1) {
return 1;
}
if (number == 2) {
return 2;
}
int first = 1, second = 2, third = 0;
for (int i = 3; i <= number; i++) {
third = first + second;
first = second;
second = third;
}
return third;
}
三 变态跳台阶问题
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析:
假设n>=2,第一步有n种跳法:跳1级、跳2级、到跳n级
跳1级,剩下n-1级,则剩下跳法是f(n-1)
跳2级,剩下n-2级,则剩下跳法是f(n-2)
……
跳n-1级,剩下1级,则剩下跳法是f(1)
跳n级,剩下0级,则剩下跳法是f(0)
所以在n>=2的情况下:
f(n)=f(n-1)+f(n-2)+…+f(1)
因为f(n-1)=f(n-2)+f(n-3)+…+f(1)
所以f(n)=2*f(n-1) 又f(1)=1,所以可得f(n)=2^(number-1)
示例代码:
int JumpFloorII(int number) {
return 1 << --number;//2^(number-1)用位移操作进行,更快
}
补充:
java中有三种移位运算符:
1. << : 左移运算符,等同于乘2的n次方
2. >>: 右移运算符,等同于除2的n次方
3. >>> 无符号右移运算符,不管移动前最高位是0还是1,右移后左侧产生的空位部分都以0来填充。与>>类似。
例:
int a = 16;
int b = a << 2;//左移2,等同于16 * 2的2次方,也就是16 * 4
int c = a >> 2;//右移2,等同于16 / 2的2次方,也就是16 / 4
欢迎关注我的微信公众号(分享各种Java学习资源,面试题,以及企业级Java实战项目回复关键字免费领取):
(1)剑指Offer之斐波那契数列问题和跳台阶问题的更多相关文章
- 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...
- 《剑指offer》斐波那契数列
本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...
- 剑指offer:斐波那契数列
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n< ...
- 力扣 - 剑指 Offer 10- I. 斐波那契数列
题目 剑指 Offer 10- I. 斐波那契数列 思路1(递归 / 自顶向下) 这题是很常见的一道入门递归题,可以采用自顶向下的递归方法,比如我们要求第n个位置的值,根据斐波那契数列的定义fib(n ...
- Go语言实现:【剑指offer】斐波那契数列
该题目来源于牛客网<剑指offer>专题. 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) n<=39 Go语言实现: 递归: ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 剑指Offer 7. 斐波那契数列 (递归)
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 题目地址 https://www.nowcoder.com/prac ...
- 《剑指offer》-斐波那契数列
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 这么直接的问fibonacci,显然是迭代计算.递归的问题在于重复计算,而迭代则避免了这一点:递归是自 ...
- 【剑指offer】斐波那契数列
一.题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 二.思路: 式子: n=0时,f=0:n=1或者n=2时f=1:否则f=f(n-1)+f(n ...
随机推荐
- linux & zip & tar
linux & zip & tar https://zzk.cnblogs.com/s?w=blog%3Axgqfrms%20zip # zip -r 递归 file_name.zip ...
- 第92天:CSS3中颜色和文本属性
一.颜色的表示方式 1. rgba(255,0,0,0.1) rgba是代表Red(红色) Green(绿色) Blue(蓝色)和 Alpha透明度.虽然它有的时候被描述为一个颜色空间 新增了RGB ...
- HDU4474_Yet Another Multiple Problem
题意很简单,要你用一些数字,组成一个数的倍数,且那个数最小. 比赛的时候没能做出来,深坑啊. 其实我只想说我以前就做过这种类型的题目了,诶. 题目的解法是数位宽搜. 首先把可用的数位提取出来,从小到大 ...
- Strategy Pattern ava设计模式之策略模式
简介 在策略模式(Strategy Pattern)中,一个类的行为或其算法可以在运行时更改.这种类型的设计模式属于行为型模式.简单理解就是一组算法,可以互换,再简单点策略就是封装算法. 意图 定义一 ...
- 【ListBox】ListBox的相关操作
Winform中两个listbox的操作是平时比较常用的操作. 本次将以一个Winform实例来分享一下两个listbox的操作,包括:listbox添加项,项的上移下移等操作. 假设有两个listb ...
- 【recording】gdoi2018
怎么说..虽然感觉其实..不太想写游记.. 但是回来看着桌面上的课本还是忍不住了(想想班里进度就..qwq)还是写一下吧 Day x(x<0) 之前大家溜到首都开心集训了一波然后被虐的很开心.. ...
- laravel5.1 使用中间表的多对多关联
用户表user 标签表tag 中间表user_tag(user_id,tag_id) 在user模型中定义tags关联如下: public function tags() { return $this ...
- intellij 插件结构(文件结构以及概念层面上的结构)
1.插件内的文件 2.插件类加载器 3.插件组件(component) 4.插件的扩展以及扩展点(Extensions.Extension Points) 5.插件的Action 6.插件的Servi ...
- laravel 5.5 在构造函数使用Session
public function __construct() { $this->request = request(); // 验证是否登录 $this->middleware(functi ...
- IO多路复用之epoll(一)讲解
网络通信中socket有自己的内核发送缓冲区和内核接受缓冲区,好比是一个水池, 当用户发送数据的时候会从用户缓冲区拷贝到socket的内核发送缓冲区,然后从 socket发送缓冲区发出去, 当用户要读 ...