K近邻python
有一个带标签的数据集X,标签为y。我们想通过这个数据集预测目标点x0的所属类别。
K近邻算法是指在X的特征空间中,把x0放进去,然后找到距离x0最近的K个点。通过这K个点所属类别,一般根据少数服从多数的原则,这K个点哪个类别多,就将x0设为哪一类。
关键有三个部分:
1.距离度量:目标点与训练集中的点距离计算,一般采用欧式距离。也可以为其他距离
2.K值选择:K为超参数,所以可以通过交叉验证的方法原则K的值。K一般选比较小的值,假如K值取跟数据集一样大小,就相当于直接认定据集中哪个类的类别多,就认目标点为哪一类。所以肯定不合适。
3.分类决策规则:一般为多数表决,少数服从多数。
K近邻算法还有一个问题是,通过什么算法来选择 距离目标点x0最近的K个样本点。线性扫描最简单,计算数据集中每个样本点与X0的距离,然后对这些距离排序,选择最小的几个。但这样复杂度高。还有一种方法是构造kd树,这里不在说明如何构造k-d树,下面文章解释的很清楚。
完结篇|一文搞懂k近邻(k-NN)算法(二) - 忆臻的文章 - 知乎 https://zhuanlan.zhihu.com/p/26029567
代码中选择K个样本点是通过numpy的内置函数np.argpartition(a,kth)即返回前K小个树的位置坐标。
数据集采用鸢尾花数据集,地址在下面,将鸢尾花数据集标签改为0,1,2。
K原则4,正确率一般在95%以上
代码:
import numpy as np
from matplotlib import pyplot as plt
from random import shuffle
import csv
def data():
'''
加载数据,数据集为鸢尾花数据集120个训练集,30个测试集
:return:
'''
with open('iris.data')as f:
reader = csv.reader(f)
data_list =list(reader)
shuffle(data_list)
X_orign = np.array([(list(map(float,x[:4]))) for x in data_list])
y_orign = []
for x in data_list:
if x[4]=='Iris-setosa':
y_orign.append(0)
elif x[4]=='Iris-versicolor':
y_orign.append(1)
else:
y_orign.append(2)
y_orign = np.array(y_orign)
X_train = X_orign[:120]
y_train = y_orign[:120]
X_test = X_orign[120:]
y_test = y_orign[120:]
return X_train,y_train,X_test,y_test
def plot_data(X,y):
'''
绘制数据集
:param X:
:param y:
:return:
'''
plt.scatter(X[y==0,0],X[y==0,2],s=15,c='r',marker='o')
plt.scatter(X[y==1,0],X[y==1,2],s=15,c='b',marker='+')
plt.scatter(X[y==2,0],X[y==2,2],s=15,c='y',marker='*')
plt.show()
def knn(x,K,X,y):
'''
采用线性扫描,求得与目标点x在X中前K个最近的距离
:param x:
:param K:
:param X:
:param y:
:return:
'''
y = y[np.argpartition(np.sum((X-x)**2,axis=1),K)[:K]]#欧式距离,获得前K小个元素的索引位置
return np.argmax([sum(y==0),sum(y==1),sum(y==2)])#返回所属类别,少数服从多数 K = 5
X_train,y_train,X_test,y_test = data()
predict = np.array([knn(i,K,X_train,y_train) for i in X_test])#预测测试集每个元素所属的类别
print('正确率为:{}%'.format(sum(predict==y_test)/len(y_test)*100))#计算正确率
参考资料:李航,统计学习方法
K近邻python的更多相关文章
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- 机器学习 Python实践-K近邻算法
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...
- 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- 统计学习方法与Python实现(二)——k近邻法
统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定 ...
- Python机器学习基础教程-第2章-监督学习之K近邻
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
随机推荐
- jQuery 中 attr() 和 prop() 方法的区别<转>
前几天,有人给 Multiple Select 插件 提了问题: setSelects doesn't work in Firefox when using jquery 1.9.0 一直都在用 jQ ...
- http协议之报文详解
一. 概述 用于HTTP协议交互的信息被称为HTTP报文.请求端(客户端)的http报文叫做请求报文,响应端的叫做响应报文. 报文,是网络中交换和传输的数据单元,即站点一次性要发送的数据块.报文包含了 ...
- 一个性能较好的JVM参数配置(转)
一个性能较好的web服务器jvm参数配置: -server//服务器模式-Xmx2g //JVM最大允许分配的堆内存,按需分配-Xms2g //JVM初始分配的堆内存,一般和Xmx配置成一样以避免每次 ...
- redis-stat 安装
apt-get install ruby apt-get install rubygems redis-stat安装: cd/root git clone https://github.com ...
- 记一次redis攻击
服务器挖矿病毒的排查过程 事情起因:朋友的一台阿里云主机,登录特别卡,找我看看 这一看就感觉出问题了,机器特别卡,top看了一眼,cpu几乎是100%运行 但是奇怪的是用top命令完全看不出来哪个进程 ...
- 微信小程序 - mixins
mixins 概念 可百度 参考 http://ask.seowhy.com/article/21007 大意和Python中的多重继承, java中的接口类似(java接口只是定义,实现需要子类自 ...
- SQL之Join的使用
一.基本概念 关于sql语句中的连接(join)关键字,是较为常用而又不太容易理解的关键字,下面这个例子给出了一个简单的解释 –建表user1,user2: table1 : create table ...
- 【noip模拟题】日历游戏(博弈论+搜索)
直接搜索即可... 注意不要爆栈..所以我们可以分块搜索... 然后太懒且太弱我就不写了... orz hzwer http://hzwer.com/4954.html [问题描述] moreD和mo ...
- C++之异常处理
C++ Code 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 ...
- hdu 4496(并查集)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4496. 思路:简单并查集应用,从后往前算就可以了. #include<iostream> ...