这是从http://duodaa.com/blog/index.php/archives/538/截得图,以下是代码

package math;

import java.math.BigDecimal;
import java.util.function.BiConsumer; public class TestEuler {
public static void main(String[] args) {
boolean flg=true; for(long x=1;flg;x++){
for(long y=1;flg&&(y<x);y++){
for(long z=1;flg&&(z<y);z++){
for(long w=1;true;w++){
int r=power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z)));
System.out.print(x+":"+power4Long(x).toString()+",");
System.out.print(y+":"+power4Long(y).toString()+",");
System.out.print(z+":"+power4Long(z).toString()+",");
System.out.println(w+":"+power4Long(w).toString()+";");
if(r==1){
break;
}
if(r==0){
flg=false;
break;
}
}
}
}
}
}
public static boolean checkEuler(long x,long y,long z,long w){
return power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z)))==0;
}
public static BigDecimal power4Long(Long b){
return power4(new BigDecimal(b));
} public static BigDecimal power4(BigDecimal b){
return b.multiply(b).multiply(b).multiply(b);
}
public static BigDecimal sum(BigDecimal... bs){
BigDecimal reB=new BigDecimal(0);
for(BigDecimal b:bs){
reB=reB.add(b);
}
return reB;
}
}

事实上这样的四层循环极大的消耗着计算机的性能计算很慢,要考我的这些代码来验证欧拉猜想估计得跑到我死都没结果

所以一下代码直接验证下结果

package math;

public class TestEuler2 {
public static void main(String[] args) {
long x=2682440L;
long y=15365639L;
long z=18796760L;
long w=20615673L;
System.err.println(x+"的四次方是"+TestEuler.power4Long(x).toString());
System.err.println(y+"的四次方是"+TestEuler.power4Long(y).toString());
System.err.println(z+"的四次方是"+TestEuler.power4Long(z).toString());
System.err.println(w+"的四次方是"+TestEuler.power4Long(w).toString());
System.out.println(TestEuler.checkEuler(x, y, z, w));
}
}

  此代码结果如下

2682440的四次方是51774995082902409832960000
15365639的四次方是55744561387133523724209779041
18796760的四次方是124833740909952854954805760000
20615673的四次方是180630077292169281088848499041
true

  有人证明这个方程式有无穷的解,真是让人惊叹数学的深邃伟大。

以下测试运行用时

package math;

import java.math.BigDecimal;
import java.util.function.BiConsumer; import org.jgroups.tests.perf.Data; /**
* @author zxl
* @jdk 1.8
* @Date 2016年10月13日上午10:04:24
*/
public class TestEuler {
public static void main(String[] args) {
long currTime=System.currentTimeMillis(); boolean flg=true; for(long x=1;flg&&(x<10L);x++){
for(long y=1;flg&&(y<x);y++){
for(long z=1;flg&&(z<y);z++){
for(long w=1;true;w++){
int r=power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z)));
System.out.print(x+":"+power4Long(x).toString()+",");
System.out.print(y+":"+power4Long(y).toString()+",");
System.out.print(z+":"+power4Long(z).toString()+",");
System.out.println(w+":"+power4Long(w).toString()+";");
if(r==1){
break;
}
if(r==0){
flg=false;
break;
}
}
}
}
}
System.out.println("用时共计:"+(System.currentTimeMillis()-currTime));
}
public static boolean checkEuler(long x,long y,long z,long w){
return power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z)))==0;
}
public static BigDecimal power4Long(Long b){
return power4(new BigDecimal(b));
} public static BigDecimal power4(BigDecimal b){
return b.multiply(b).multiply(b).multiply(b);
}
public static BigDecimal sum(BigDecimal... bs){
BigDecimal reB=new BigDecimal(0);
for(BigDecimal b:bs){
reB=reB.add(b);
}
return reB;
}
}

 该代码计算到10用时163毫秒,因为w在小于x的时候等式恒不成立

for(long w=x;true;w++)

所以w从x开始循环有效的降低了运行时间大概达到原先的四分之一耗时。

Euler猜想的更多相关文章

  1. Project Euler 59: XOR decryption

    计算机上的每个字母都对应一个独特的编号,普遍接受的标准是ASCII(美国信息交换标准代码).例如,大写字母的A的ASCII码是65,星号(*)的ASCII码是42,而小写字母k的代码是107. 一种现 ...

  2. Python练习题 042:Project Euler 014:最长的考拉兹序列

    本题来自 Project Euler 第14题:https://projecteuler.net/problem=14 ''' Project Euler: Problem 14: Longest C ...

  3. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  4. The Euler function[HDU2824]

    The Euler functionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...

  5. hdu1282回文数猜想

    Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...

  6. Euler Tour Tree与dynamic connectivity

    Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online) ...

  7. 深入JavaScript:词法分析、连续赋值猜想

    JavaScript:词法分析.连续赋值猜想 原创文章,转摘请注明出处:苏福:http://www.cnblogs.com/susufufu/p/5851642.html 深夜发文,先吐槽下博客园的编 ...

  8. 害死人不偿命的(3n+1)猜想

    卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数 ...

  9. 继续(3n+1)猜想

    卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候, ...

随机推荐

  1. (转)winform(C#)里几种弹出对话框

    //消息框中需要显示哪些按钮,此处显示“确定”和“取消” MessageBoxButtons messButton = MessageBoxButtons.OKCancel; //"确定要退 ...

  2. highcharts

    preparation Highcharts Highcharts是一个制作图表的纯Javascript类库,主要特性如下: 兼容性:兼容当今所有的浏览器,包括iPhone.IE和火狐等等: 对个人用 ...

  3. Django (2)

    一.Django基本   程序编写 a. url.py        /index/    ->   func b. views.py def func(request):     # 包含所有 ...

  4. 设计模式--享元模式Flyweight(结构型)

    一.享元模式 在一个系统中如果有多个相同的对象,这些对象有部分状态是可以共享的,我们运用共享技术就能有效地支持大量细粒度的对象. 二.例子 举个围棋的例子,围棋的棋盘共有361格,即可放361个棋子. ...

  5. opengl es中不同的绘制方式

    opengl es中不同的绘制方式 转载请保留出处:http://xiaxveliang.blog.163.com/blog/static/297080342013467344263/ 1. GL_P ...

  6. SQL中NULL值

    SQL的表达式,除了IS NULL和NOT NULL以外,只要出现NULL值结果都为FALSE 简单的例子: SELECT * FROM table WHERE name!='abc' 只要name值 ...

  7. SQL排序问题

    ''按多个字段排序 Select * From Job order by job desc,id asc ''按首字符(非数字)排序 )) ) end ''按首字符分组 ) ''合并Order by排 ...

  8. 编译osgEarth2.8+VS2013+CMake3.4.0在Release版本的问题

    1>LINK : fatal error LNK1181: 无法打开输入文件"optimized.lib" 可以到http://forum.osgearth.org搜索相关帖 ...

  9. CentOS7 安装中文帮助手册

    1.首先确定系统安装中文字体否 locale 2.rpm安装中文帮助手册 挂在光盘 将man-pages-zh-CN-1.5.2-4.el7.noarch.rpm拷贝到本机 rpm -ivh man- ...

  10. CDQ学习笔记

    CDQ三维偏序 给出n个点(x,y,z) 每个点求出x'<=x,y'<=x,z'<=x的点(x',y',z')有多少个 第一维 快排 第二维 CDQ 第三维 树状数组 CDQ 先按x ...