上篇文章详细解析了Receiver不断接收数据的过程,在Receiver接收数据的过程中会将数据的元信息发送给ReceiverTracker:

 
本文将详细解析ReceiverTracker的的架构设计和具体实现
 
一、ReceiverTracker的主要功能
    ReceiverTracker的主要功能有:
    1.在Executor上启动Receivers
    2.接受Receiver的注册
    3.借助ReceivedBlockTracker来管理Receiver接收数据的元数据
    4.接受Receiver发送的各种消息,并作相应处理
    5.更新Receiver接收数据的速率(也就是限流)
    6.不断的等待Receivers的运行状态,只要Receivers停止运行,就重新启动Receiver。也就是Receiver的容错功能。
    7.停止Receivers 
    8.汇报Receiver发送过来的错误信息
 
二、ReceiverTracker具体功能详解
    2.1 启动receiver并管理receiver接收数据的元数据
 
    首先,ReceiverTracker内部有一个ReceiverTrackerEndPoint通讯体endpoint变量,endpoint用来和Receiver和ReceiverTracker本身进行消息通讯。这个ReceiverTrackerEndPoint通讯体在ReceiverTracker启动时被初始化:
 
 
ReceiverTracker启动Receiver时候,向ReceiverTrackerEndPoint通讯体endpoint变量发送了StartAllReceivers(receivers)消息:
 
 
Receiver启动后会向ReceiverTracker注册,告诉ReceiverTracker自己启动成功:
 
 
代码中的trackerEndpoint就是ReceiverTracker中ReceiverTrackerEndPoint通讯体endpoint的引用。
 
Receiver会不断将接收的数据封装成Block,并将这些Block推送给BlockManager管理,在将这些Block推送给BlockManager之后,ReceiverSupervisor会将Block的元信息发送给ReceiverTracker的endpoint:
 
 
可以看到ReceiverSupervisor向ReceiverTracker的endpoint发送了AddBlock(blockInfo)消息:
 
ReceiverTracker收到AddBlock(blockInfo)消息后,会启动一个线程进行处理:
 
 
ReceiverTracker收到AddBlock(blockInfo)消息后,调用了addBlock(receiveedBlockInfo)方法进行处理,下面是addBlock的源码:
 
 
这里其实调用了receivedBlockTracker的addBlock方法,receivedBlockTracker是ReceivedBlockTracker对象,它是在ReceiverTracker实例化时候被创建:
 
 
下面看一下ReceivedBlockTracker的addBlock方法:
 
 
可以看到ReceivedBlockTracker的addBlock方法将block的元信息添加到了一个队队列中,最终是添加到一个叫做streamIdToUnallocatedBlockQueues的HashMap中,其中key是streamId,值是该streamid对应的block队列。
 
 
 
2.2 为Batch分配Block
    当spark streaming应用程序动态生成job的时候,JobGenerator会调用generateJobs方法,在该方法中会为批处理分配已经接收的Block
 
   
 
这里调用了jobScheduler中receiverTracker的allocatedBlockToBatch方法,这里的receiverTracker就是ReceiverTracker对象,下面看一下该方法的实现:
 
 
可以看到,最终调用了ReceivedBlockTracker的allocatedBlockToBatch方法:
 
 
这里先根据streamId,从streamIdToUnallocatedBlockQueues中取出接收到的block队列,并将streamId和block队列封装成AllocatedBlocks,最后根据batchTime将其对应的AllocatedBlocks对象加入timeToAllocatedBlocks中,timeToAllocatedBlocks是一个HashMap:
 
 
这样Batch的Block就分配完成。

 
2.3 ReceiverTracker处理的其他消息
    ReceiverTracker中ReceiverTrackerEndpoint的receive方法定义了各种消息的处理逻辑:  
 
(1) 收到StartAllReceivers(receivers)消息后,ReceiverTracker会为receivers分配executor,并在executor上启动相应的receiver
 
      
 
(2)当ReceiverTracker监控到receiver退出返回时,会给ReceiverTrackerEndpoint发送RestartTracker(receiver)消息。收到该消息后,会重新为receiver分配executor启动receiver(如果原来的executor运行正常就在原先的executor上重新启动,否则重新调度executor)。
 
 
(3)当Spark Streaming 的job结束后,JobScheduler会调用handleJobCompletion方法,最终会调用cleanupOldBlocksAndBatches方法给endpoint发送CleanupOldBlocks消息:
 
收到该消息后,会被路由到Receiver 进行Block的清理。
 
(4)UpdateReceiverRateLimit消息
 
  
 
收到UpdateReceiverRateLimit消息后,会将其路由到receiver,当receiver收到该消息后会调用BlockGenerator的update方法更新Block生成速率。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

11.Spark Streaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究的更多相关文章

  1. Spark Streaming源码解读之Driver中ReceiverTracker架构设计以具体实现彻底研究

    本期内容 : ReceiverTracker的架构设计 消息循环系统 ReceiverTracker具体实现 一. ReceiverTracker的架构设计 1. ReceiverTracker可以以 ...

  2. Spark Streaming源码解读之Driver容错安全性

    本期内容 : ReceivedBlockTracker容错安全性 DStreamGraph和JobGenerator容错安全性 Driver的安全性主要从Spark Streaming自己运行机制的角 ...

  3. Spark Streaming源码解读之JobScheduler内幕实现和深度思考

    本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环, ...

  4. Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考

    本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Drive ...

  5. 15、Spark Streaming源码解读之No Receivers彻底思考

    在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Appr ...

  6. Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

    本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Rece ...

  7. Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考

    本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Tea ...

  8. Spark Streaming源码解读之生成全生命周期彻底研究与思考

    本期内容 : DStream与RDD关系彻底研究 Streaming中RDD的生成彻底研究 问题的提出 : 1. RDD是怎么生成的,依靠什么生成 2.执行时是否与Spark Core上的RDD执行有 ...

  9. Spark Streaming源码解读之Job动态生成和深度思考

    本期内容 : Spark Streaming Job生成深度思考 Spark Streaming Job生成源码解析 Spark Core中的Job就是一个运行的作业,就是具体做的某一件事,这里的JO ...

随机推荐

  1. 「Python-Django」Django中使用数据库的 9 个小技巧

    Django 中使用数据库的 9 个小技巧. 1. 过滤器聚合 在 Django 2.0 之前,如果你想得到“用户总数”.“活跃用户总数”等信息时,你不得不使用条件表达式. Django 2.0 中, ...

  2. pandans导出Excel并将数据保存到不同的Sheet表中

    数据存在mongodb中,按照类别导出到Excel文件,问题是想把同一类的数据放到一个sheet表中,最后只导出到一个excel文件中# coding=utf-8import pandas as pd ...

  3. java请求url返回json

    package cn.it.test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputS ...

  4. 分治法:三维偏序问题之CDQ分治

    我怀疑那个k是用来定界限用的 #include <cstdio> #include <cstring> #include <algorithm> using nam ...

  5. Python学习笔记(十八)@property

    # 请利用@property给一个Screen对象加上width和height属性, # 以及一个只读属性resolution: # -*- coding: utf-8 -*- class Scree ...

  6. LintCode 510: Maximal Rectangle

    LintCode 510: Maximal Rectangle 题目描述 给你一个二维矩阵,权值为False和True,找到一个最大的矩形,使得里面的值全部为True,输出它的面积 Wed Nov 2 ...

  7. 铺地砖|状压DP练习

    有一个N*M(N<=5,M<=1000)的棋盘,现在有1*2及2*1的小木块无数个,要盖满整个棋盘,有多少种方式?答案只需要mod1,000,000,007即可. //我也不知道这道题的来 ...

  8. js关闭当前页面跳转新页面

    页面代码: <p class="info"><span style="font-weight: bold">所属项目:</span ...

  9. array_unshift() 函数

    出处:http://www.w3school.com.cn/php/func_array_unshift.asp

  10. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...