上篇文章详细解析了Receiver不断接收数据的过程,在Receiver接收数据的过程中会将数据的元信息发送给ReceiverTracker:

 
本文将详细解析ReceiverTracker的的架构设计和具体实现
 
一、ReceiverTracker的主要功能
    ReceiverTracker的主要功能有:
    1.在Executor上启动Receivers
    2.接受Receiver的注册
    3.借助ReceivedBlockTracker来管理Receiver接收数据的元数据
    4.接受Receiver发送的各种消息,并作相应处理
    5.更新Receiver接收数据的速率(也就是限流)
    6.不断的等待Receivers的运行状态,只要Receivers停止运行,就重新启动Receiver。也就是Receiver的容错功能。
    7.停止Receivers 
    8.汇报Receiver发送过来的错误信息
 
二、ReceiverTracker具体功能详解
    2.1 启动receiver并管理receiver接收数据的元数据
 
    首先,ReceiverTracker内部有一个ReceiverTrackerEndPoint通讯体endpoint变量,endpoint用来和Receiver和ReceiverTracker本身进行消息通讯。这个ReceiverTrackerEndPoint通讯体在ReceiverTracker启动时被初始化:
 
 
ReceiverTracker启动Receiver时候,向ReceiverTrackerEndPoint通讯体endpoint变量发送了StartAllReceivers(receivers)消息:
 
 
Receiver启动后会向ReceiverTracker注册,告诉ReceiverTracker自己启动成功:
 
 
代码中的trackerEndpoint就是ReceiverTracker中ReceiverTrackerEndPoint通讯体endpoint的引用。
 
Receiver会不断将接收的数据封装成Block,并将这些Block推送给BlockManager管理,在将这些Block推送给BlockManager之后,ReceiverSupervisor会将Block的元信息发送给ReceiverTracker的endpoint:
 
 
可以看到ReceiverSupervisor向ReceiverTracker的endpoint发送了AddBlock(blockInfo)消息:
 
ReceiverTracker收到AddBlock(blockInfo)消息后,会启动一个线程进行处理:
 
 
ReceiverTracker收到AddBlock(blockInfo)消息后,调用了addBlock(receiveedBlockInfo)方法进行处理,下面是addBlock的源码:
 
 
这里其实调用了receivedBlockTracker的addBlock方法,receivedBlockTracker是ReceivedBlockTracker对象,它是在ReceiverTracker实例化时候被创建:
 
 
下面看一下ReceivedBlockTracker的addBlock方法:
 
 
可以看到ReceivedBlockTracker的addBlock方法将block的元信息添加到了一个队队列中,最终是添加到一个叫做streamIdToUnallocatedBlockQueues的HashMap中,其中key是streamId,值是该streamid对应的block队列。
 
 
 
2.2 为Batch分配Block
    当spark streaming应用程序动态生成job的时候,JobGenerator会调用generateJobs方法,在该方法中会为批处理分配已经接收的Block
 
   
 
这里调用了jobScheduler中receiverTracker的allocatedBlockToBatch方法,这里的receiverTracker就是ReceiverTracker对象,下面看一下该方法的实现:
 
 
可以看到,最终调用了ReceivedBlockTracker的allocatedBlockToBatch方法:
 
 
这里先根据streamId,从streamIdToUnallocatedBlockQueues中取出接收到的block队列,并将streamId和block队列封装成AllocatedBlocks,最后根据batchTime将其对应的AllocatedBlocks对象加入timeToAllocatedBlocks中,timeToAllocatedBlocks是一个HashMap:
 
 
这样Batch的Block就分配完成。

 
2.3 ReceiverTracker处理的其他消息
    ReceiverTracker中ReceiverTrackerEndpoint的receive方法定义了各种消息的处理逻辑:  
 
(1) 收到StartAllReceivers(receivers)消息后,ReceiverTracker会为receivers分配executor,并在executor上启动相应的receiver
 
      
 
(2)当ReceiverTracker监控到receiver退出返回时,会给ReceiverTrackerEndpoint发送RestartTracker(receiver)消息。收到该消息后,会重新为receiver分配executor启动receiver(如果原来的executor运行正常就在原先的executor上重新启动,否则重新调度executor)。
 
 
(3)当Spark Streaming 的job结束后,JobScheduler会调用handleJobCompletion方法,最终会调用cleanupOldBlocksAndBatches方法给endpoint发送CleanupOldBlocks消息:
 
收到该消息后,会被路由到Receiver 进行Block的清理。
 
(4)UpdateReceiverRateLimit消息
 
  
 
收到UpdateReceiverRateLimit消息后,会将其路由到receiver,当receiver收到该消息后会调用BlockGenerator的update方法更新Block生成速率。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

11.Spark Streaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究的更多相关文章

  1. Spark Streaming源码解读之Driver中ReceiverTracker架构设计以具体实现彻底研究

    本期内容 : ReceiverTracker的架构设计 消息循环系统 ReceiverTracker具体实现 一. ReceiverTracker的架构设计 1. ReceiverTracker可以以 ...

  2. Spark Streaming源码解读之Driver容错安全性

    本期内容 : ReceivedBlockTracker容错安全性 DStreamGraph和JobGenerator容错安全性 Driver的安全性主要从Spark Streaming自己运行机制的角 ...

  3. Spark Streaming源码解读之JobScheduler内幕实现和深度思考

    本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环, ...

  4. Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考

    本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Drive ...

  5. 15、Spark Streaming源码解读之No Receivers彻底思考

    在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Appr ...

  6. Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

    本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Rece ...

  7. Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考

    本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Tea ...

  8. Spark Streaming源码解读之生成全生命周期彻底研究与思考

    本期内容 : DStream与RDD关系彻底研究 Streaming中RDD的生成彻底研究 问题的提出 : 1. RDD是怎么生成的,依靠什么生成 2.执行时是否与Spark Core上的RDD执行有 ...

  9. Spark Streaming源码解读之Job动态生成和深度思考

    本期内容 : Spark Streaming Job生成深度思考 Spark Streaming Job生成源码解析 Spark Core中的Job就是一个运行的作业,就是具体做的某一件事,这里的JO ...

随机推荐

  1. MVC网站发布到 IIS

    接下来将发布成功的站点部署到iis7.0. 步骤如下: 1. 安装 Microsoft .net FrameWork 4.0安装包(网站开发时候使用的就是.net framework4.0框架); 2 ...

  2. python---Celery分布式任务队列了解

    linux下定时器了解 Celery 框架学习笔记(不错哟) Celery 分布式任务队列快速入门 Celery的最佳实践 一.Celery介绍 Celery 是一个 基于python开发的分布式异步 ...

  3. Oracl闪回数据命令。

    当数据库操作没有备份,并且误删数据.可闪回任何 当前闪回15分钟前数据库状态.  alter table BASE_APPOINT_LOG enable row movement;flashback  ...

  4. AJAX获取服务器文件

    写一个按钮,点击后在指定的div里显示本地txt文件内容 在本地新建一个test.txt,里面随便写点内容就好. <!DOCTYPE html> <html> <head ...

  5. .net core 中 Identity Server 4 Topic 之 Startup

    约定 简称 Id4. Id4在.net core 中的使用符合.net core 的约定架构,即Services来注册服务,middleware方式集成. 1. 配置服务 通过DI注入: public ...

  6. C语言中的序列点

    TAG: C, 序列点 DATE: 2013-08-07 序列点是程序执行序列中一些特殊的点. 当有序列点存在时,序列点前面的表达式必须求值完毕,并且副作用也已经发生, 才会计算序列点后面的表达式和其 ...

  7. 【AtCoder】ARC086 E - Smuggling Marbles

    [题目]E - Smuggling Marbles [题意]给定n+1个点的树(root=0),每个点可以选择放或不放弹珠,每一轮顺序进行以下操作: 1.将根节点0的弹珠加入答案. 2.每个点的弹珠移 ...

  8. jquery-load()方法

    调用load方法的完整格式是:load( url, [data], [callback] ), 其中: •url:是指要导入文件的地址. •data:可选参数:因为Load不仅仅可以导入静态的html ...

  9. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  10. Installation Guide for Appium 1.6.3

    A.) System Requirements : - Require node 4 or above Xcode 8 iOS 10 B.) Open terminal and type follow ...