HDU 4675 GCD of Sequence (2013多校7 1010题 数学题)
GCD of Sequence
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 46 Accepted Submission(s): 14
Alice shows N integers a1, a2, …, aN, and M, K. She says each integers 1 ≤ ai ≤ M.
And now Alice wants to ask for each d = 1 to M, how many different sequences b1, b2, …, bN. which satisfies :
1. For each i = 1…N, 1 ≤ b[i] ≤ M
2. gcd(b1, b2, …, bN) = d
3. There will be exactly K position i that ai != bi (1 ≤ i ≤ n)
Alice thinks that the answer will be too large. In order not to annoy Bob, she only wants to know the answer modulo 1000000007.Bob can not solve the problem. Now he asks you for HELP!
Notes: gcd(x1, x2, …, xn) is the greatest common divisor of x1, x2, …, xn
The first line of each test contains three integers N, M, K. (1 ≤ N, M ≤ 300000, 1 ≤ K ≤ N)
The second line contains N integers: a1, a2, ..., an (1 ≤ ai ≤ M) which is original sequence.
The line contains M integer, the i-th integer is the answer shows above when d is the i-th number.
3 3 3
3 5 3
1 2 3
59 3 0 1 1
In the first test case :
when d = 1, {b} can be :
(1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 2, 2)
(2, 1, 1)
(2, 1, 2)
(2, 2, 1)
when d = 2, {b} can be :
(2, 2, 2)
And because {b} must have exactly K number(s) different from {a}, so {b} can't be (3, 3, 3), so Answer = 0
比赛时候想到了做法,但是错估了复杂度,一直没写出来,结束后才搞完、
其实就是从M算到1.
假如现在算i. 那么找到i ~ M中i的倍数。
看原序列中有多少个是i的倍数,设为cnt.
因为最终假如gcd是i的话,所有数都必须是i的倍数。
那就相当于在cnt个中,要把cnt-(N-K)个变掉,其余的(N-cnt)个要变成i的倍数。
i的倍数为t = M/i 个。
那么符合的数有C[cnt][N-K]* (t-1)^(cnt-(N-K)) * t^(N-cnt)
这个算出来的是gcd是i的倍数的情况。
减掉gcd是2i,3i....这样的就行了
/* **********************************************
Author : kuangbin
Created Time: 2013/8/13 16:39:35
File Name : F:\2013ACM练习\2013多校7\1010.cpp
*********************************************** */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std; const int MOD = 1e9+;
long long pow_m(long long a,long long n)
{
long long ret = ;
long long tmp = a%MOD;
while(n)
{
if(n&)
{
ret *= tmp;
ret %= MOD;
}
tmp *= tmp;
tmp %= MOD;
n >>= ;
}
return ret;
}
long long C[];
//求ax = 1( mod m) 的x值,就是逆元(0<a<m)
long long inv(long long a,long long m)
{
if(a == )return ;
return inv(m%a,m)*(m-m/a)%m;
}
long long ans[];
int a[];
int num[];
int b[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int N,M,K;
while(scanf("%d%d%d",&N,&M,&K) == )
{
memset(num,,sizeof(num));
for(int i = ;i <= N;i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
C[N-K] = ;
for(int i = N-K+;i <= N;i++)
{
C[i] = C[i-]*i%MOD*inv(i-(N-K),MOD)%MOD;
}
for(int i = M;i>= ;i--)
{
int cnt = ;
long long ss = ;
for(int j = ; j*i <= M;j++)
{
cnt += num[i*j];
if(j > )ss = (ss + ans[i*j])%MOD;
}
int t = M/i;
if(t == )
{
if(cnt == N-K)ans[i] = ;
else ans[i] = ;
continue;
} if(cnt < N-K)
{
ans[i] = ;
continue;
}
long long tmp = ;
//在cnt个中选N-K个为相同的
tmp =(tmp*C[cnt])%MOD;
//其余的cnt-(N-K)个有t-1个选择
tmp = ( tmp * pow_m(t-,cnt-(N-K)) )%MOD;
//其余N-cnt个本来就不相同的,有t个选择
tmp = (tmp * pow_m(t,N-cnt));
ans[i] = (tmp - ss + MOD)%MOD; }
for(int i = ;i <= M;i++)
{
printf("%I64d",ans[i]);
if(i < M)printf(" ");
else printf("\n");
} }
return ;
}
HDU 4675 GCD of Sequence (2013多校7 1010题 数学题)的更多相关文章
- HDU 4705 Y (2013多校10,1010题,简单树形DP)
Y Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submiss ...
- HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- HDU 4691 Front compression (2013多校9 1006题 后缀数组)
Front compression Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Othe ...
- HDU 4679 Terrorist’s destroy (2013多校8 1004题 树形DP)
Terrorist’s destroy Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU 4671 Backup Plan (2013多校7 1006题 构造)
Backup Plan Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)
Building Fence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)To ...
- HDU 4675 GCD of Sequence(容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4675 题意:给出n,m,K,一个长度为n的数列A(1<=A[i]<=m).对于d(1< ...
- HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...
随机推荐
- Petrozavodsk Summer Training Camp 2017
Petrozavodsk Summer Training Camp 2017 Problem A. Connectivity 题目描述:有\(n\)个点,现不断地加边.每条边有一种颜色,如果一个点对\ ...
- Oracle常用sql语句(三)之子查询
子查询 子查询要解决的问题,不能一步求解 分为: 单行子查询 多行子查询 语法: SELECT select_list FROM table WHERE expr operator (SELECT s ...
- (五)Spring 对事务的支持
第一节:事务简介 满足一下四个条件: 第一:原子性: 第二:一致性: 第三:隔离性: 第四:持久性: ------------------------------------------------- ...
- 湖南省第十一届大学生程序设计竞赛:Internet of Lights and Switches(HASH+二分+异或前缀和)
Internet of Lights and Switches Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3 Solved: 3[Submit][ ...
- js写一个插件
//;分号开头,用于防止代码压缩合并时与其它代码混在一起造成语法错误 //而事实证明,uglify压缩工具会将无意义的前置分号去掉,我只是习惯了这么写 //(function(){})();立即执行函 ...
- GUC-5 CountDownLatch闭锁
/* * CountDownLatch :闭锁,在完成某些运算是,只有其他所有线程的运算全部完成,当前运算才继续执行 */ public class TestCountDownLatch { publ ...
- linux shell 正则表达式(BREs,EREs,PREs)的比较
原文 : linux shell 正则表达式(BREs,EREs,PREs)差异比较 在使用 linux shell的实用程序,如awk,grep,sed等,正则表达式必不可少,他们的区别是什么 ...
- 关闭webstorm自动保存,并显示文件未保存标识
1.取消自动保存 2.显示编辑状态设置:
- 十 使用dict和set
dict Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度. 举个例子,假设要根据同学的名字 ...
- Java 中静态代码块初始化问题测试
Java 中静态代码块初始化问题测试 原创 情况一:变量是 static final 修饰的"编译期常量",如 public static final String a = &qu ...