GCD of Sequence

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 46    Accepted Submission(s): 14

Problem Description
Alice is playing a game with Bob.
Alice shows N integers a1, a2, …, aN, and M, K. She says each integers 1 ≤ ai ≤ M.
And now Alice wants to ask for each d = 1 to M, how many different sequences b1, b2, …, bN. which satisfies :
1. For each i = 1…N, 1 ≤ b[i] ≤ M
2. gcd(b1, b2, …, bN) = d
3. There will be exactly K position i that ai != bi (1 ≤ i ≤ n)

Alice thinks that the answer will be too large. In order not to annoy Bob, she only wants to know the answer modulo 1000000007.Bob can not solve the problem. Now he asks you for HELP!
Notes: gcd(x1, x2, …, xn) is the greatest common divisor of x1, x2, …, xn

 
Input
The input contains several test cases, terminated by EOF.
The first line of each test contains three integers N, M, K. (1 ≤ N, M ≤ 300000, 1 ≤ K ≤ N)
The second line contains N integers: a1, a2, ..., an (1 ≤ ai ≤ M) which is original sequence.

 
Output
For each test contains 1 lines :
The line contains M integer, the i-th integer is the answer shows above when d is the i-th number.
 
Sample Input
3 3 3
3 3 3
3 5 3
1 2 3
 
Sample Output
7 1 0
59 3 0 1 1

Hint

In the first test case :
when d = 1, {b} can be :
(1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 2, 2)
(2, 1, 1)
(2, 1, 2)
(2, 2, 1)
when d = 2, {b} can be :
(2, 2, 2)
And because {b} must have exactly K number(s) different from {a}, so {b} can't be (3, 3, 3), so Answer = 0

 
Source
 
Recommend
zhuyuanchen520
 

比赛时候想到了做法,但是错估了复杂度,一直没写出来,结束后才搞完、

其实就是从M算到1.

假如现在算i. 那么找到i ~ M中i的倍数。

看原序列中有多少个是i的倍数,设为cnt.

因为最终假如gcd是i的话,所有数都必须是i的倍数。

那就相当于在cnt个中,要把cnt-(N-K)个变掉,其余的(N-cnt)个要变成i的倍数。

i的倍数为t = M/i 个。

那么符合的数有C[cnt][N-K]*  (t-1)^(cnt-(N-K))  * t^(N-cnt)

这个算出来的是gcd是i的倍数的情况。

减掉gcd是2i,3i....这样的就行了

 /* **********************************************
Author : kuangbin
Created Time: 2013/8/13 16:39:35
File Name : F:\2013ACM练习\2013多校7\1010.cpp
*********************************************** */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std; const int MOD = 1e9+;
long long pow_m(long long a,long long n)
{
long long ret = ;
long long tmp = a%MOD;
while(n)
{
if(n&)
{
ret *= tmp;
ret %= MOD;
}
tmp *= tmp;
tmp %= MOD;
n >>= ;
}
return ret;
}
long long C[];
//求ax = 1( mod m) 的x值,就是逆元(0<a<m)
long long inv(long long a,long long m)
{
if(a == )return ;
return inv(m%a,m)*(m-m/a)%m;
}
long long ans[];
int a[];
int num[];
int b[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int N,M,K;
while(scanf("%d%d%d",&N,&M,&K) == )
{
memset(num,,sizeof(num));
for(int i = ;i <= N;i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
C[N-K] = ;
for(int i = N-K+;i <= N;i++)
{
C[i] = C[i-]*i%MOD*inv(i-(N-K),MOD)%MOD;
}
for(int i = M;i>= ;i--)
{
int cnt = ;
long long ss = ;
for(int j = ; j*i <= M;j++)
{
cnt += num[i*j];
if(j > )ss = (ss + ans[i*j])%MOD;
}
int t = M/i;
if(t == )
{
if(cnt == N-K)ans[i] = ;
else ans[i] = ;
continue;
} if(cnt < N-K)
{
ans[i] = ;
continue;
}
long long tmp = ;
//在cnt个中选N-K个为相同的
tmp =(tmp*C[cnt])%MOD;
//其余的cnt-(N-K)个有t-1个选择
tmp = ( tmp * pow_m(t-,cnt-(N-K)) )%MOD;
//其余N-cnt个本来就不相同的,有t个选择
tmp = (tmp * pow_m(t,N-cnt));
ans[i] = (tmp - ss + MOD)%MOD; }
for(int i = ;i <= M;i++)
{
printf("%I64d",ans[i]);
if(i < M)printf(" ");
else printf("\n");
} }
return ;
}

HDU 4675 GCD of Sequence (2013多校7 1010题 数学题)的更多相关文章

  1. HDU 4705 Y (2013多校10,1010题,简单树形DP)

    Y Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submiss ...

  2. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  3. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  4. HDU 4691 Front compression (2013多校9 1006题 后缀数组)

    Front compression Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  5. HDU 4679 Terrorist’s destroy (2013多校8 1004题 树形DP)

    Terrorist’s destroy Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. HDU 4671 Backup Plan (2013多校7 1006题 构造)

    Backup Plan Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  7. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  8. HDU 4675 GCD of Sequence(容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4675 题意:给出n,m,K,一个长度为n的数列A(1<=A[i]<=m).对于d(1< ...

  9. HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)

    题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...

随机推荐

  1. Sublime Text2使用规则

    Sublime Text是我发现的有一好用的编辑器,它不单单只支持 python ,几乎支持目前主流的语言,快捷键丰富,可以极大的提高代码开发效率.Sublime Text 网址:http://www ...

  2. 牛奶ddw如何通过以太坊钱包实现互相打赏

    很多朋友不清楚如何转账ddw,但是万能的网友是无敌的,这两天就自己摸索的一点经验总结下今天的转账经验. 1. 提取到自己的账户 这个大家都知道如何操作,使用官方的钱包 在“日日盈app”中点击&quo ...

  3. 部署weblogic 12c的几点收获

    最近刚编写完weblogic12c的部署脚本,这里将过程中的几点收获进行记录: 1.windows下编写的脚本在linux环境下运行需要dos2unix进行格式转换 2.weblogic安装环境检测需 ...

  4. word2vec参数

    架构:skip-gram(慢.对罕见字有利)vs CBOW(快) ·         训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利) 负例采样准确率提高,速度会慢, ...

  5. 2017百度春招<有趣的排序>

    题目 度度熊有一个N个数的数组,他想将数组从小到大排好序,但是萌萌的度度熊只会下面这个操作:任取数组中的一个数然后将它放置在数组的最后一个位置.问最少操作多少次可以使得数组从小到大有序? #inclu ...

  6. droupout

    当训练样本比较少时,为了防止过拟合,可以丢掉一些节点的连接,让某些隐含层结点不工作(即停止更新权值),采用部分连接的方式. 参考:http://blog.csdn.net/on2way/article ...

  7. GUC-5 CountDownLatch闭锁

    /* * CountDownLatch :闭锁,在完成某些运算是,只有其他所有线程的运算全部完成,当前运算才继续执行 */ public class TestCountDownLatch { publ ...

  8. 【51nod】1594 Gcd and Phi

    题解 跟随小迪学姐的步伐,学习一下数论 小迪学姐太巨了! 这道题的式子很好推嘛 \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} ...

  9. yum使用

    一.使用yum安装和卸载软件,有个前提是yum安装的软件包都是rpm格式的.安装的命令是,yum install ~,yum会查询数据库,有无这一软件包,如果有,则检查其依赖冲突关系,如果没有依赖冲突 ...

  10. Hadamard product

    按元素乘积. python中Hadamard product和matrix product的区分: For numpy.ndarray objects, * performs elementwise ...