题意:有N朵花,在M种颜色中选择恰好k种不同的颜色,将这N朵花染色,要求相邻的两朵花颜色不相同.

分析:若限制改为选择不超过k种颜色将N朵花朵染色,则方案数\(f(N,k) = k*(k-1)^{N-1}\),第一朵可以在k个颜色中任意选择,第二朵可以有k-1个选择,第三朵也有k-1....

但是f(N,k)种方案中包含了使用了少于k个颜色的方案数,要减去这些方案数.设没有使用的颜色数为i,当i=1时,减去只使用1种颜色的方案数\(C(k,1)*f(N,k-1)\);当i=2时,方案数已经被i=1时重复减去了一遍,所以要加回... 根据容斥原理,需要减去的方案数为

\[tmp = -\sum_{i=1}^{k-2}(-1)^{i}*C(k,i)*f(N,k-i)
\]

\(f(N,k) - tmp\)得到用k种颜色染色的方案.

因为k种颜色是在M种颜色中任选,所以最后的答案是

\[ans = C(M,k)*(f(N,k)-tmp))
\]

因为该题M和N很大,所以最后一步的组合数需要用卢卡斯取模.

中间过程的\(C(k,i),k\)恒定,因为\(k\leq 1e6\),可以预处理出阶乘的逆元,对每组数据,\(O(k)\)处理出所有k为底的组合数.

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e6+5;
LL mod = 1e9+7;
LL fac[MAXN], inv[MAXN];
LL Comb[MAXN]; LL qpow(LL x, LL n, LL p)
{
LL res=1;
while(n){
if(n&1) res= res *x % p;
x= x*x %p;
n>>=1;
}
return res;
}
void pre()
{
fac[0] = fac[1] = 1;
for(int i = 2;i<MAXN; ++i){
fac[i] = i*fac[i-1] %mod;
}
inv[MAXN-1] = qpow( fac[MAXN-1], mod-2 ,mod); for(int i= MAXN-2; i>=0; --i){
inv[i] = (i+1) * inv[i+1] % mod;
}
} void pre_Ck(LL k)
{
LL pt = 1;
for(int i=1 ;i<=k ;++i) pt = pt * i % mod;
for(int i=0 ;i<=k ;++i){
Comb[i] = pt * inv[i] %mod * inv[k-i] %mod;
}
} LL C (LL a, LL b, LL p) {
if (a < b) return 0;
if (b > a - b) b = a - b; LL up = 1, down = 1; for (LL i = 0; i < b; i++) {
up = up * (a-i) % p;
down = down * (i+1) % p;
}
return up * qpow(down, p-2, p) % p; // 逆元
} LL lucas (LL a, LL b, LL p) { //卢卡斯组合数取模
if (b == 0)
return 1;
return C(a%p, b%p, p) * lucas(a/p, b/p, p) % p;
} LL f(LL n , LL k)
{
return k * qpow(k-1,n-1,mod) %mod;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
LL N,M,k;
pre();
int T,cas=1; scanf("%d", &T);
while(T--){
scanf("%lld %lld %lld",&N, &M ,&k);
pre_Ck(k);
LL res = f(N,k);
LL tmp =0;
for(int i= 1;i<=k-2;++i){
if(i&1 ) tmp = (tmp + Comb[i] * f(N,k-i) %mod) %mod;
else tmp = (tmp + mod - Comb[i]* f(N,k-i) %mod) %mod;
}
res = (res + mod - tmp) % mod * lucas(M, k, mod) %mod;
printf("Case #%d: %lld\n",cas++,res);
}
return 0;
}

Gym 100548F Color 2014-2015 ACM-ICPC, Asia Xian Regional Contest (容斥原理+大数取模)的更多相关文章

  1. hdu 5444 Elven Postman(二叉树)——2015 ACM/ICPC Asia Regional Changchun Online

    Problem Description Elves are very peculiar creatures. As we all know, they can live for a very long ...

  2. (并查集)Travel -- hdu -- 5441(2015 ACM/ICPC Asia Regional Changchun Online )

    http://acm.hdu.edu.cn/showproblem.php?pid=5441 Travel Time Limit: 1500/1000 MS (Java/Others)    Memo ...

  3. (二叉树)Elven Postman -- HDU -- 54444(2015 ACM/ICPC Asia Regional Changchun Online)

    http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limit: 1500/1000 MS (Java/Others)  ...

  4. 2015 ACM/ICPC Asia Regional Changchun Online HDU 5444 Elven Postman【二叉排序树的建树和遍历查找】

    Elven Postman Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  5. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  6. 2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)

    2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) easy: ACE ...

  7. 2014-2015 ACM-ICPC, Asia Xian Regional Contest(部分题解)

    摘要 本文主要给出了2014-2015 ACM-ICPC, Asia Xian Regional Contest的部分题解,说明了每题的题意.解题思路和代码实现,意即熟悉区域赛比赛题型. Built ...

  8. 2014-2015 ACM-ICPC, Asia Xian Regional Contest G The Problem to Slow Down You 回文树

    The Problem to Slow Down You Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjud ...

  9. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

随机推荐

  1. 《Programming with Objective-C》第四章 Encapsulating Data

    Designated Initializer 不稳定的传送门 合成属性 Properties don’t always have to be backed by their own instance ...

  2. The user specified as a definer (”@’%') does not exist解决方法

    报错如下: 遇见这个问题,网上都是千篇一律,改权限( grant all privileges on *.* to root@”%” identified by “.”;   flush privil ...

  3. HDU 1058 Humble Numbers (动规+寻找丑数问题)

    Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  4. iOS UIWebView 获取内容实际高度,关闭滚动效果

    本文转载至 http://my.oschina.net/Khiyuan/blog/341535   iOS UIWebView 获取内容实际高度,关闭滚动效果 近期做东西,将 UIWebView 嵌套 ...

  5. springboot tomcat的使用

    使用自带的tomcat 以java 项目启动: 默认端口号为8080       1.必须导入此包       2.有启动类

  6. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  7. tortoiseSVN如何回滚(切换至)某个历史版本?

    tortoiseSVN如何回滚(切换至)某个历史版本? 1.右键需要回滚的项目,tortoiseSVN - >show log 2.右键需要回滚的历史版本,选择revert to this re ...

  8. MySQL5.7压缩包安装图文教程

    MySQL5.7压缩包安装图文教程 一.下载网址:https://dev.mysql.com/downloads/ 选择5.7版本 二.解压 下载完成后解压,解压后如下(zip是免安装的,解压后配置成 ...

  9. 遍历Map集合四中方法

    public static void main(String[] args) { Map<String, String> map = new HashMap<String, Stri ...

  10. 关于一个非常非常无语的bug,与君共勉

    今天,哦,不对,是昨天晚上,我花了大概四十分钟去找一个bug,结果还没找到 错误代码" $('#sendAreaInfo').citypicker('reset'); $('#sendAre ...