bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路
Time Limit: 5 Sec Memory Limit: 64 MB
Description
Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场)。有些农场之间原本就有道路相连。 所有N(1 <= N <= 1,000)个农场(用1..N顺次编号)在地图上都表示为坐标为(X_i, Y_i)的点(0 <= X_i <= 1,000,000;0 <= Y_i <= 1,000,000),两个农场间道路的长度自然就是代表它们的点之间的距离。现在Farmer John也告诉了你农场间原有的M(1 <= M <= 1,000)条路分别连接了哪两个农场,他希望你计算一下,为了使得所有农场连通,他所需建造道路的最小总长是多少。
Input
* 第1行: 2个用空格隔开的整数:N 和 M
* 第2..N+1行: 第i+1行为2个用空格隔开的整数:X_i、Y_i * 第N+2..N+M+2行: 每行用2个以空格隔开的整数i、j描述了一条已有的道路, 这条道路连接了农场i和农场j
Output
* 第1行: 输出使所有农场连通所需建设道路的最小总长,保留2位小数,不必做 任何额外的取整操作。为了避免精度误差,计算农场间距离及答案时 请使用64位实型变量
Sample Input
1 1
3 1
2 3
4 3
1 4
输入说明:
FJ一共有4个坐标分别为(1,1),(3,1),(2,3),(4,3)的农场。农场1和农场
4之间原本就有道路相连。
Sample Output
输出说明:
FJ选择在农场1和农场2间建一条长度为2.00的道路,在农场3和农场4间建一
条长度为2.00的道路。这样,所建道路的总长为4.00,并且这是所有方案中道路
总长最小的一种。
HINT
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
#define db double
inline int rd()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct qaz{int a,b;db v;}e[N*N],q[N];
bool cmp(qaz a,qaz b){return a.v<b.v;}
db dis(int a,int b)
{
ll x=q[a].a-q[b].a,y=q[a].b-q[b].b;
return sqrt(x*x+y*y);
}
int cnt,fa[N];
void add(int a,int b){e[++cnt]=(qaz){a,b,dis(a,b)};}
int findf(int x){return x==fa[x]?x:fa[x]=findf(fa[x]);}
int n,m,x,y;
db ans;
int main()
{
n=rd();m=rd();
int i,j,f1,f2;
for(i=;i<=n;i++)
{
q[i].a=rd();q[i].b=rd();
fa[i]=i;
}
for(i=;i<=m;i++)
{
x=rd();y=rd();
x=findf(x);y=findf(y);
fa[y]=x;
}
for(int i=;i<=n;i++) fa[i]=findf(i);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i==j) continue;
if(fa[i]!=fa[j]) add(i,j);
}
}
sort(e+,e+cnt+,cmp);
for(int i=;i<=cnt;i++)
{
x=findf(e[i].a);y=findf(e[i].b);
if(x!=y)
{
ans+=e[i].v;
fa[y]=x;
}
}
printf("%.2lf\n",ans);
return ;
}
bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树的更多相关文章
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- BZOJ——1626: [Usaco2007 Dec]Building Roads 修建道路
http://www.lydsy.com/JudgeOnline/problem.php?id=1626 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1 ...
- BZOJ 1626 [Usaco2007 Dec]Building Roads 修建道路:kruskal(最小生成树)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1626 题意: 有n个农场,坐标为(x[i],y[i]). 有m条原先就修好的路,连接农场( ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路【最小生成树】
先把已有的边并查集了,然后MST即可 记得开double #include<iostream> #include<cstdio> #include<algorithm&g ...
- 【BZOJ】1626: [Usaco2007 Dec]Building Roads 修建道路(kruskal)
http://www.lydsy.com/JudgeOnline/problem.php?id=1626 依旧是水题..太水了.. #include <cstdio> #include & ...
- [Usaco2007 Dec]Building Roads 修建道路[最小生成树]
Description Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农 ...
- bzoj1626[Usaco2007 Dec]Building Roads 修建道路
Description Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农 ...
- [Usaco2007 Dec]Building Roads 修建道路
题目描述 Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场).有些农场 ...
- BZOJ 1692: [Usaco2007 Dec]队列变换( 贪心 )
数据 n <= 30000 , 然后 O( n² ) 的贪心也过了..... USACO 数据是有多弱啊 = = ( ps : BZOJ 1640 和此题一模一样 , 双倍经验 ) ------ ...
随机推荐
- Caffe提取任意层特征并进行可视化
现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请 ...
- python简单爬虫一
简单的说,爬虫的意思就是根据url访问请求,然后对返回的数据进行提取,获取对自己有用的信息.然后我们可以将这些有用的信息保存到数据库或者保存到文件中.如果我们手工一个一个访问提取非常慢,所以我们需要编 ...
- 阿里Java研发工程师实习面经,附面试技巧
作者:如何进阿里 链接:https://www.nowcoder.com/discuss/72899?type=0&order=0&pos=17&page=1 来源:牛客网 前 ...
- 安装完ODTwithODAC112012,出现ORA-12560:TNS:协议适配器错误
参考:http://blog.csdn.net/tan_yixiu/article/details/6762357 操作系统:windows2008 Enterprise 64位 开发工具:VS201 ...
- 到底什么是Upnp?[转载]
本文出自:http://www.cnblogs.com/nehu/archive/2006/05/13/399342.html 解释一. 准确地说,UPnP(Universal Plug and Pl ...
- Activity工作流 -- java运用
一. 什么是工作流 以请假为例,现在大多数公司的请假流程是这样的 员工打电话(或网聊)向上级提出请假申请——上级口头同意——上级将请假记录下来——月底将请假记录上交公司——公司将请假录入电脑 采用工作 ...
- 蓝图-BluePrint
蓝图,听起来就是一个很宏伟的东西 在Flask中的蓝图 blueprint 也是非常宏伟的 它的作用就是将 功能 与 主服务 分开怎么理解呢? 比如说,你有一个客户管理系统,最开始的时候,只有一个查看 ...
- gc 调优记录
qps 10,0000 -Xms10240m -Xmx10240m -XX:NewRatio=5 -XX:SurvivorRatio=6 2017-12-19T15:10:14.539+0800: 1 ...
- 如何关闭WordPress后台的主题、插件、版本更新通知?
由于WordPress 更新速度非常快,不论是主题 插件或是版本,每个月少说要执行个好几次,因为更新快,所以WordPress后台加入了更新通知,提醒使用者有新版本了,可以进行插件.主题或是系统更新, ...
- Robot Framework 快速入门
Robot Framework 快速入门 目录 介绍 概述 安装 运行demo 介绍样例应用程序 测试用例 第一个测试用例 高级别测试用例 数据驱动测试用例 关键词keywords 内置关键词 库关键 ...