实现二叉树的遍历且只需要O(1)的空间。

参考:http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

Morris Traversal方法遍历的更多相关文章

  1. [转载]Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)

    本文主要解决一个问题,如何实现二叉树的前中后序遍历,有两个要求: 1. O(1)空间复杂度,即只能使用常数空间: 2. 二叉树的形状不能被破坏(中间过程允许改变其形状). 通常,实现二叉树的前序(pr ...

  2. Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)——无非是在传统遍历过程中修改叶子结点加入后继结点信息(传统是stack记录),然后再删除恢复

    先看看线索二叉树 n个结点的二叉链表中含有n+1(2n-(n-1)=n+1)个空指针域.利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索 ...

  3. Morris Traversal 方法遍历二叉树(非递归、不用栈,O(1)空间)

    http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

  4. Morris Traversal 二叉树遍历。

    那天做了个SWAP NODE的题,要求constant space,不得不Morris Traversal. 稍微研究了一下,真正意义上的O(1)space对二叉树进行遍历.好像是1979年的算法. ...

  5. 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)

    例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...

  6. C前序遍历二叉树Morris Traversal算法

    首先来递归算法,简单易懂: #include <stdio.h> #include <stdlib.h> #include <stdbool.h> typedef ...

  7. 额外空间复杂度O(1) 的二叉树遍历 → Morris Traversal,你造吗?

    开心一刻 一天,有个粉丝遇到感情方面的问题,找我出出主意 粉丝:我女朋友吧,就是先天有点病,听不到人说话,也说不了话,现在我家里人又给我介绍了一个,我该怎么办 我:这个问题很难去解释,我觉得一个人活着 ...

  8. 数据结构《10》----二叉树 Morris 中序遍历

    无论是二叉树的中序遍历还是用 stack 模拟递归, 都需要 O(n)的空间复杂度. Morris 遍历是一种 常数空间 的遍历方法,其本质是 线索二叉树(Threaded Binary Tree), ...

  9. Morris Traversal

    昨天临近要睡觉的时候做了一个leetcode题目,"Recover BST",算法很容易就想到了,直接找出两个异常点就好了,但是我写的算法是用栈实现的非递归遍历,空间复杂度是O(N ...

随机推荐

  1. 【刷题】BZOJ 5248 [2018多省省队联测]一双木棋

    Description 菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手.棋局开始时,棋盘上没有任何棋子, 两人轮流在格子上落子,直到填满棋盘时结束.落子的规则是:一个格子可以落子 ...

  2. Docker学习笔记六:Docker搭建企业级私有仓库

    前言 Docker不仅是一个强大的服务器部署工具,而且它还有一个官方的Docker Hub registry用于储存Docker镜像.上传镜像到Docker Hub是免费的,上传的镜像文件同时也对公共 ...

  3. 解决win7 64位操作系统下安装PL/SQL后连接报错问题: make sure you have the 32 bits oracle client installed

    1. 在Oracle官网(http://www.oracle.com/technetwork/topics/winsoft-085727.html)下载文件: instantclient-basic- ...

  4. 【CodeChef】ForbiddenSum

    Portal --> CC ForbiddenSum Solution 场上想到了\(O(NM)\)的做法..然而并没有什么用 首先考虑比较简单的一个问题,给定一个数组\(A\),问这些数不能凑 ...

  5. 框架----Django框架(基础篇)

    一.基本配置 一.创建django程序 终端命令:django-admin startproject sitename IDE创建Django程序时,本质上都是自动执行上述命令 其他常用命令: pyt ...

  6. 关于使用EmguCV出现 “无法加载 DLL“cvextern”: 找不到指定的程序” 的解决方法

    http://blog.csdn.net/cdjcong/article/details/8444191 查找了网上的一些说法,都是说没有设置好路径,或者未将DLL文件复制到Debug文件夹下,但是我 ...

  7. String的indexOf方法

    indexOf(String.indexOf 方法)字符串的IndexOf()方法搜索在该字符串上是否出现了作为参数传递的字符串,如果找到字符串,则返回字符的起始位置 (0表示第一个字符,1表示第二个 ...

  8. bzoj 1030 AC自动机+dp

    代码: //先把给的单词建AC自动机并且转移fail,然后d[i][j]表示构造的文章到第i位时处在字典树的第j个节点的不包含单词的数量,最后用总的数量26^m //-d[m][0~sz]即可.其中不 ...

  9. (转)MySQL建表设置两个默认CURRENT_TIMESTAMP的技巧

    业务场景: 例如用户表,我们需要建一个字段是创建时间, 一个字段是更新时间. 解决办法可以是指定插入时间,也可以使用数据库的默认时间. 在mysql中如果设置两个默认CURRENT_TIMESTAMP ...

  10. UVA 1575 Factors

    https://vjudge.net/problem/UVA-1575 题意: 令f(k)=n 表示 有n种方式,可以把正整数k表示成几个数的乘积的形式. 例 10=2*5=5*2,所以f(10)=2 ...