题目

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example: Input: [1,2,3,0,2]
Output: 3
Explanation: transactions = [buy, sell, cooldown, buy, sell]

解题思路:

第一种方案, 假设数组长度为n, dp[i][j]为从i到j所能达到的最大收益,那么本题即求dp[0][n - 1],

对于dp[i][j], 其可能的cooldown位置有 I, i + 1, ..., j - 1, j,

所以存在递推关系

dp[i][j] = max{ dp[i][k - 1] + dp[k + 1][j]} k = i, i + 1, ... , j - 1, j

当k == i 时, dp[i][k - 1] 不存在,即只有dp[k + 1][j], 同理

当k == j 时, dp[k + 1][j] 不存在,即只有dp[i][k - 1]

prices[j] - prices[I] 为dp[I][j]的初始值

所以最终dp[i][j] = max(prices[j] - prices[I], max{dp[i][k - 1] + dp[k + 1][j]})

而题目希望求解的是dp[0][n - 1]. 所以i 从n-1往0求解,j从0往n-1求解

时间复杂度O(n^3) 空间复杂度O(n^2)

代码如下

class Solution {
public:
//suppose cooldown at k
//dp[i][j] = max{dp[i][k - 1] + dp[k + 1][j]} k = i ... j
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (0 == n) return 0;
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
dp[i][j] = prices[j] - prices[i];
}
} for (int i = n - 1; i >= 0; i--) {
for (int j = 0; j < n; j++) {
//cout<<"i="<<i<<" j="<<j<<" "<<dp[i][j]<<endl;
for (int k = i; k < j; k++) {
int tmp = 0;
if (k - 1 >= i) {
tmp += dp[i][k - 1];
} if (k + 1 <= j) {
tmp += dp[k + 1][j];
} dp[i][j] = max(dp[i][j], tmp);
}
}
} return dp[0][n - 1];
}
};

第二种方案:顺序DP

常规的DP的类型主要有三类,矩阵dp,一个一维数组的dp,两个一维数组的dp

矩阵dp 构造f[i][j], 一维dp构造f[i], 两个一维dp构造f[i][j]

本题恰好可以使用顺序dp,而且是一维的数组

解题思路:

每一天股票的持有状态可能有三种情况

cool down-->buy-->sell-->cool down-->buy-->sell-->cool down

状态转换的关系如上, leetcode讨论区有人画了状态图,非常容易理解, 参考链接

https://leetcode.com/explore/interview/card/top-interview-questions-hard/121/dynamic-programming/862/discuss/75928/Share-my-DP-solution-(By-State-Machine-Thinking)

也就是说

buy的状态 可能是从前一个buy 或者前一个cool down过来

sell的状态 只能是从前一个buy过来

cool down的状态 可能是从前一个cool down或者前一个sell的状态过来

这里需要搞清楚

1)sell 和 cool down的区别, sell状态只有 卖出的那个时刻状态是保持的, 卖完第二天状态就是cool down了.

2)buy 到 sell 之间的这段时间,按题意并不算cool down,而全是buy状态

3)sell 到 cool down之间的这段时间,全是cool down状态

由此可以得出

buy[i] = max(buy[i - 1], rest[i - 1] - prices[I]) // 这里用rest 表示 cool down

rest[i] = max(rest[i - 1], sell[I - 1])

sell[I] = buy[I - 1] + prices[i]

代码如下

java

class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
if (0 == n) return 0; int[] buy = new int[n];
int[] rest = new int[n];
int[] sell = new int[n]; buy[0] = -prices[0];
rest[0] = 0;
sell[0] = Integer.MIN_VALUE; for (int i = 1; i < n; i++) {
buy[i] = Math.max(buy[i - 1], rest[i - 1] - prices[i]);
rest[i] = Math.max(rest[i - 1], sell[i - 1]);
sell[i] = buy[i - 1] + prices[i];
} return Math.max(rest[n - 1], sell[n - 1]);
}
}

c++

class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (0 == n) return 0; vector<int> buy(n, 0);
vector<int> rest(n, 0);
vector<int> sell(n, 0);
buy[0] = -prices[0];
rest[0] = 0; //不可能存在,所以收益取最小,因为i位置,我们希望取的是最大值,
//将sell设置为最小值,表示永远不可能取该值
sell[0] = INT_MIN; for (int i = 1; i < n; i++) {
buy[i] = max(buy[i - 1], rest[i - 1] - prices[i]);
rest[i] = max(rest[i - 1], sell[i - 1]);
sell[i] = buy[i - 1] + prices[i];
} return max(rest[n - 1], sell[n - 1]);
}
};

解题报告Best Time to Buy and Sell Stock with Cooldown的更多相关文章

  1. LeetCode解题报告—— Best Time to Buy and Sell Stock

    Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...

  2. leetcode 121. Best Time to Buy and Sell Stock 、122.Best Time to Buy and Sell Stock II 、309. Best Time to Buy and Sell Stock with Cooldown

    121. Best Time to Buy and Sell Stock 题目的要求是只买卖一次,买的价格越低,卖的价格越高,肯定收益就越大 遍历整个数组,维护一个当前位置之前最低的买入价格,然后每次 ...

  3. Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown)

    Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown) 股票问题: 121. 买卖股票 ...

  4. 【LeetCode】309. Best Time to Buy and Sell Stock with Cooldown 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  5. [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. Best Time to Buy and Sell Stock with Cooldown

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  8. LeetCode Best Time to Buy and Sell Stock with Cooldown

    原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/ 题目: Say you hav ...

  9. 121. 122. 123. 188. Best Time to Buy and Sell Stock *HARD* 309. Best Time to Buy and Sell Stock with Cooldown -- 买卖股票

    121. Say you have an array for which the ith element is the price of a given stock on day i. If you ...

随机推荐

  1. FPGA中的平方根

    作为纯数字电路的FPGA,实现平方根是比较麻烦的.毕竟硬件不支持这种算法. 好在厂家的IP核中有相关的平方根IP库,所以用起来也很方便. 上图是在QUARTUS下调用库中的IP核,综合适配后的资源使用 ...

  2. snmp 介绍和Ubuntu安装使用

    一.介绍 1. 服务器监控工具可以帮助我们从任何一个地方实时了解服务器的性能和功能.监控宝服务器监控套装,可以实时CPU使用率.内存使用率.平均负载.磁盘I/O.网络流量.磁盘使用率等,能够同时为你带 ...

  3. HttpClient使用示例

    1)使用HttpClient发送GET请求 public class MainActivity extends Activity implements OnClickListener { privat ...

  4. [转]Jsp 常用标签

    <jsp:include> 动态引入,涉及到的多个 jsp 页面会翻译成多个 servlet 并在执行时合并. include 指令 是静态引入,涉及到的多个 jsp 页面会翻译成一个 s ...

  5. Spring MVC中发布Restful Web服务

      对于企业应用来说,数据是许多业务的命脉,软件通常是可替换的,但是多年积累的数据是永远不能替换的.   近些年来,以信息为中心的表述性状态转移(Representational State Tran ...

  6. 使用jQuery Pagination Plugin实现分页效果

    最近使用分页这个基础效果较为频繁,而项目前端页面使用的是纯静态的HTML,自己之前写的JSP中的分页就用不成了:项目中也引入了Bootstrap,本来想使用Bootstrap中的分页样式,但发现其样式 ...

  7. B. T-primes

    /* PROBLEMSSUBMITSTATUSSTANDINGSCUSTOM TEST B. T-primes time limit per test2 seconds memory limit pe ...

  8. sql server xml 截断

    c#读取 sql生成的xml时,发生阶段. 加,type 解决

  9. canvas绘制圆弧

    canvas绘制圆弧 方法 anticlockwise为true表示逆时针,默认为顺时针 角度都传的是弧度(弧度 = (Math.PI/180)*角度) arc(x, y, radius, start ...

  10. Django学习---Web框架及基础知识

    Django学习---Web框架 web框架的本质 我们在学socket,我们创建一个socketserver,然后运行起来,有一个client客户端要连接socket服务端,连接上之后,如果两边都没 ...