解题报告Best Time to Buy and Sell Stock with Cooldown
题目
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example:
Input: [1,2,3,0,2]
Output: 3
Explanation: transactions = [buy, sell, cooldown, buy, sell]
解题思路:
第一种方案, 假设数组长度为n, dp[i][j]为从i到j所能达到的最大收益,那么本题即求dp[0][n - 1],
对于dp[i][j], 其可能的cooldown位置有 I, i + 1, ..., j - 1, j,
所以存在递推关系
dp[i][j] = max{ dp[i][k - 1] + dp[k + 1][j]} k = i, i + 1, ... , j - 1, j
当k == i 时, dp[i][k - 1] 不存在,即只有dp[k + 1][j], 同理
当k == j 时, dp[k + 1][j] 不存在,即只有dp[i][k - 1]
prices[j] - prices[I] 为dp[I][j]的初始值
所以最终dp[i][j] = max(prices[j] - prices[I], max{dp[i][k - 1] + dp[k + 1][j]})
而题目希望求解的是dp[0][n - 1]. 所以i 从n-1往0求解,j从0往n-1求解
时间复杂度O(n^3) 空间复杂度O(n^2)
代码如下
class Solution {
public:
//suppose cooldown at k
//dp[i][j] = max{dp[i][k - 1] + dp[k + 1][j]} k = i ... j
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (0 == n) return 0;
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
dp[i][j] = prices[j] - prices[i];
}
}
for (int i = n - 1; i >= 0; i--) {
for (int j = 0; j < n; j++) {
//cout<<"i="<<i<<" j="<<j<<" "<<dp[i][j]<<endl;
for (int k = i; k < j; k++) {
int tmp = 0;
if (k - 1 >= i) {
tmp += dp[i][k - 1];
}
if (k + 1 <= j) {
tmp += dp[k + 1][j];
}
dp[i][j] = max(dp[i][j], tmp);
}
}
}
return dp[0][n - 1];
}
};
第二种方案:顺序DP
常规的DP的类型主要有三类,矩阵dp,一个一维数组的dp,两个一维数组的dp
矩阵dp 构造f[i][j], 一维dp构造f[i], 两个一维dp构造f[i][j]
本题恰好可以使用顺序dp,而且是一维的数组
解题思路:
每一天股票的持有状态可能有三种情况
cool down-->buy-->sell-->cool down-->buy-->sell-->cool down
状态转换的关系如上, leetcode讨论区有人画了状态图,非常容易理解, 参考链接
https://leetcode.com/explore/interview/card/top-interview-questions-hard/121/dynamic-programming/862/discuss/75928/Share-my-DP-solution-(By-State-Machine-Thinking)
也就是说
buy的状态 可能是从前一个buy 或者前一个cool down过来
sell的状态 只能是从前一个buy过来
cool down的状态 可能是从前一个cool down或者前一个sell的状态过来
这里需要搞清楚
1)sell 和 cool down的区别, sell状态只有 卖出的那个时刻状态是保持的, 卖完第二天状态就是cool down了.
2)buy 到 sell 之间的这段时间,按题意并不算cool down,而全是buy状态
3)sell 到 cool down之间的这段时间,全是cool down状态
由此可以得出
buy[i] = max(buy[i - 1], rest[i - 1] - prices[I]) // 这里用rest 表示 cool down
rest[i] = max(rest[i - 1], sell[I - 1])
sell[I] = buy[I - 1] + prices[i]
代码如下
java
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
if (0 == n) return 0;
int[] buy = new int[n];
int[] rest = new int[n];
int[] sell = new int[n];
buy[0] = -prices[0];
rest[0] = 0;
sell[0] = Integer.MIN_VALUE;
for (int i = 1; i < n; i++) {
buy[i] = Math.max(buy[i - 1], rest[i - 1] - prices[i]);
rest[i] = Math.max(rest[i - 1], sell[i - 1]);
sell[i] = buy[i - 1] + prices[i];
}
return Math.max(rest[n - 1], sell[n - 1]);
}
}
c++
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (0 == n) return 0;
vector<int> buy(n, 0);
vector<int> rest(n, 0);
vector<int> sell(n, 0);
buy[0] = -prices[0];
rest[0] = 0;
//不可能存在,所以收益取最小,因为i位置,我们希望取的是最大值,
//将sell设置为最小值,表示永远不可能取该值
sell[0] = INT_MIN;
for (int i = 1; i < n; i++) {
buy[i] = max(buy[i - 1], rest[i - 1] - prices[i]);
rest[i] = max(rest[i - 1], sell[i - 1]);
sell[i] = buy[i - 1] + prices[i];
}
return max(rest[n - 1], sell[n - 1]);
}
};
解题报告Best Time to Buy and Sell Stock with Cooldown的更多相关文章
- LeetCode解题报告—— Best Time to Buy and Sell Stock
Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...
- leetcode 121. Best Time to Buy and Sell Stock 、122.Best Time to Buy and Sell Stock II 、309. Best Time to Buy and Sell Stock with Cooldown
121. Best Time to Buy and Sell Stock 题目的要求是只买卖一次,买的价格越低,卖的价格越高,肯定收益就越大 遍历整个数组,维护一个当前位置之前最低的买入价格,然后每次 ...
- Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown)
Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown) 股票问题: 121. 买卖股票 ...
- 【LeetCode】309. Best Time to Buy and Sell Stock with Cooldown 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...
- [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- Best Time to Buy and Sell Stock with Cooldown
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- LeetCode Best Time to Buy and Sell Stock with Cooldown
原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/ 题目: Say you hav ...
- 121. 122. 123. 188. Best Time to Buy and Sell Stock *HARD* 309. Best Time to Buy and Sell Stock with Cooldown -- 买卖股票
121. Say you have an array for which the ith element is the price of a given stock on day i. If you ...
随机推荐
- String.Format数字格式化输出 {0:N2} {0:D2} {0:C2} (转)
String.Format数字格式化输出 {:N2} {:D2} {:C2} (转) //格式为sring输出 // Label1.Text = string.Format("asdfads ...
- 20181104_C#线程之Thread_ThreadPool_使用Thread实现回到和带参数的回调
C# .net Framework多线程演变路径: 1.0 1.1 时代使用Thread 2.0 时代使用ThreadPool 3.0 时代使用Task 4.0 时代使用 ...
- 使用 maven 构建 SpringMVC
引言 最近需要使用SpringMVC做一个小项目,之前对SpringMVC没什么了解,所以先写一个SpringMVC的小Demo练习一下. 使用Maven构建项目 IDE = Eclipse 首先创建 ...
- kubernetes 学习 pod相关
1 pod的状态: Pending, Running, Succeeded, Failed, Unknown 2 pod重启策略: Always(自动重启,是默认的) . OnFailure(容 ...
- 全连接BP神经网络
前馈神经网络 前馈神经网络(feedforward neural network)是最朴素的神经网络,通常我们所说的前馈神经网络有两种,一种叫反向传播网络(Back propagation Netwo ...
- MySQL 聚合函数、运算符操作、约束、表的复制
1.聚合函数 1.分类 avg(字段名) : 求该字段平均值 sum(字段名) : 求和 max(字段名) : 最大值 min(字段名) : 最小值 count(字段名) : 统计该字段记录的个数2. ...
- [Python] WeChat_Robot
在微信中接入一个聊天机器人 1. WeChat 个人接口itchat 2. 图灵机器人 #-*- coding:utf-8 -*- import itchat import requests apiU ...
- VMware Workstation Pro 12 创建虚拟机(安装Ubuntu)
为了在VMware Workstation下创建一个虚拟机,折腾了大半天,现把比较顺利的创建办法记录下来: VMware Workstation版本: 创建步骤: 1.VMware Workstati ...
- 使用被动混合内容的方式来跨越浏览器会阻断HTTPS上的非安全请求(HTTP)请求的安全策略抓包详解
/*通过传入loginId在token中附加loginId参数,方便后续读取指定缓存中的指定用户信息*/ GET /multitalk/takePhone.php?loginId=4edc153568 ...
- git之生成SSH key
git之生成SSH key SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定.利用 SSH 协议可以有效防止远程管理过程中的信 ...