gpu和cpu区别
GPU的功耗远远超过CPU
Cache, local memory: CPU > GPU
Threads(线程数): GPU > CPU
Registers: GPU > CPU 多寄存器可以支持非常多的Thread,thread需要用到register,thread数目大,register也必须得跟着很大才行。
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU > CPU。
在计算机上运行的程序从性能的角度来说大致可分为三类:
(1) I/O intensive;
(2) Memory intensive
(3) Compute-intensive。
(1)I/O intensive的程序其性能瓶颈是I/O,也就是说程序运行的大部分时间花在了硬盘读写/网络通信上,而I/O处在计算机体系结构金字塔的最底层,速度非常慢。最近炒的很火的big data 讨论的就是这一类应用程序。几百TB 甚至到PB级别的数据往哪搁,只能放在硬盘上。一台机器容量太小CPU太少怎么办,搞几百台甚至上千台机器用网线连起来分布处理。所以这块全是I/O, 现在大的互联网公司不多搞几个上千节点的集群肯定撑不住。
(2)Memory intensive的程序其性能瓶颈在内存访问,程序中有大量的随机访问内存的操作,但是基本没有I/O, 这类程序已经比第一类程序快一个数量级了,但是和寄存器的速度还是没法比。目前大部分应用程序都属于这类。个人电脑里装的的各种软件基本就是这类,如果有点I/O, 立刻就会非常得卡。
以上提到的这两类程序的应用最广泛,涵盖了大部分有用的计算机软件,但遗憾的是GPU在这两块毫无用处, GPU只有在计算密集型的程序有些作用。I/O是瓶颈的程序,花在计算的时间可以忽略不计,再怎么用GPU加速也没用。 含有大量内存随机访问的程序也不适合在GPU上执行,大量的随机访问甚至可以使GPU的行为由并行变为串行。
什么类型的程序适合在GPU上运行?
(1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。
(2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。
满足以上两点,就可以用GPU做运算了。 不过你还得先用CUDA或者Open CL 把能在GPU上运行的程序写出来, 这也是很麻烦的,写一下就知道了。 而且GPU的架构比较特殊,要想写出高效率的程序,要花很多很多时间。笔者想说写GPU程序是一件很蛋疼的事情。
GPU在某些地方很有用,但应用面比较窄,远远没有某公司声称的那么有用。当今还是Intel的天下, 现在计算机的速度已经很快了,计算其实已经不是什么大问题。I/O才是最需要解决的问题。 记得曾经看过N家的GTC峰会,黄某人吹得神乎其神,连笔者都被感动了,多少多少T FLOPS的计算速度。 程序运行时间从100 秒 变成 1秒 其实没多重要,你倒杯水的功夫就100秒了。运行时间从100天缩短到1天才是大贡献。 前者就是GPU做的事情,后者才是我们真正需要的。
gpu:数量大,计算简单,重复多次
cpu :数量不那么大,计算复杂,重复性低
gpu和cpu区别的更多相关文章
- GPU与CPU的区别
作者:虫子君 链接:https://www.zhihu.com/question/19903344/answer/96081382 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- 聊聊GPU与CPU的区别
目录 前言 CPU是什么? GPU是什么? GPU与CPU的区别 GPU的由来 并行计算 GPU架构优化 GPU和CPU的应用场景 作者:小牛呼噜噜 | https://xiaoniuhululu.c ...
- GPU、CPU的异同
一.概念 CPU(Center Processing Unit)即中央处理器,GPU(Graphics Processing Unit)即图形处理器. 二.CPU和GPU的相同之处 两者都有总线和外界 ...
- GPU与CPU
GPU与CPU CPU CPU,也就是中央处理器,结构主要包括控制器(指挥各部分工作).运算器(实现数据加工).寄存器.高缓以及数据/控制/状态总线.计算机的性能很大程度上依赖于CPU,CPU的功能包 ...
- 使用PCAST检测散度以比较GPU和CPU结果
使用PCAST检测散度以比较GPU和CPU结果 并行编译器辅助软件测试(PCAST)是英伟达HPC FORTRAN.C++和C编译器中的一个特性.PCAST有两个用例.一个新的处理器或新的编译程序的部 ...
- 【转】GPU 与CPU的作用协调,工作流程、GPU整合到CPU得好处
在不少人的心目中,显卡最大的用途可能就只有两点--玩游戏.看电影,除此之外,GPU并没有其他的作用了.但是随着微软IE9的正式发布,不少人突然发现,微软一直提到一个名词:GPU硬件加速,从而也让不少人 ...
- GPU 与CPU的作用协调,工作流程、GPU整合到CPU得好处
http://blog.csdn.net/maopig/article/details/6803141 在不少人的心目中,显卡最大的用途可能就只有两点——玩游戏.看电影,除此之外,GPU并没有其他的作 ...
- YOLO---Darknet下的 GPU vs CPU 速度
YOLO---Darknet下的 GPU vs CPU 速度 目录 一.基础环境 二.安装Darknet-yolo v3 三.CPU下测试 四.GPU下测试 五.测试速度对比结论 正文 一.基础环境 ...
- [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...
随机推荐
- Hadoop(三)HDFS读写原理与shell命令
一 HDFS概述 1.1 HDFS产生背景 随着数据量越来越大,在一个操作系统管辖的范围内存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件 ...
- day4 作业计算器
作业:计算器开发 (1)实现加减乘除及拓号优先级解析: (2)用户输入 1 - 2 * ( (60-30 +(-40/5) * (-9-2*5/-3 + 7 /3*99/4*2998 +10 * 56 ...
- DotNetOpenAuth实践之Windows签名制作
系列目录: DotNetOpenAuth实践系列(源码在这里) 在上篇中我们搭建了一个简单的认证服务器,里面使用到了Windows签名证书,这一篇则是教大家如何制作Windows签名证书,下面进入正题 ...
- loadrunner获取毫秒及字符串替换实现
loadrunner获取毫秒及字符串替换实现 今天做一个性能测试,参数化要求创建用户名不可以重复,想来想不没有什么好的办法来避免用户名字的重复.所以就想用时间+随机数来实现,但是实现中遇到一个问题. ...
- STL容器 -- Map
核心描述: map 就是从键(key) 到 值(value) 的一个映射.且键值不可重复,内部按照键值排序. 头文件: #include <map> 拓展: multimap 是一个多重映 ...
- 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]
题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉 ...
- Java多线程编程——volatile关键字
(本篇主要内容摘自<Java多线程编程核心技术>) volatile关键字的主要作用是保证线程之间变量的可见性. package com.func; public class RunThr ...
- scrapy抓取拉勾网职位信息(六)——反爬应对(随机UA,随机代理)
上篇已经对数据进行了清洗,本篇对反爬虫做一些应对措施,主要包括随机UserAgent.随机代理. 一.随机UA 分析:构建随机UA可以采用以下两种方法 我们可以选择很多UserAgent,形成一个列表 ...
- redis环境搭建和java应用
安装 连接 Java连接redis 下载 wget http://download.redis.io/releases/redis-4.0.9.tar.gz 解压移动 tar -xvf redis-4 ...
- 【bzoj1875】【JZYZOJ1354】[SDOI2009]HH去散步 矩阵快速幂 点边转换
http://172.20.6.3/Problem_Show.asp?id=1354 http://www.lydsy.com/JudgeOnline/problem.php?id=1875 题意: ...