In the last post we've installed Hadoop 2.2.0 on Ubuntu. Now we'll see how to launch an example mapreduce task on Hadoop.

In the Hadoop directory (which you should find at /opt/hadoop/2.2.0) you can find a JAR containing some examples: the exact path is $HADOOP_COMMON_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar . 
This JAR contains different examples of mapreduce programs. We'll launch the WordCount program, which is the equivalent of "Hello, world" for MapReduce. This programs just count the occurrences of every single word of the file given as the input. 
To run this example we need to prepare something. We assume that we have the HDFS service running; if we didn't create a user directory, we have to do it now (assuming the hadoop user we're using is mapred):

$ hadoop fs -mkdir -p /user/mapred

When we pass "fs" as the first argument to the hadoop command, we're telling hadoop to work on HDFS filesystem; in this case, we used the mkdir command as a switch to create a new directory on HDFS. 
Now that our user has a home directory, we can create a directory that we'll use lo load the input file for the mapreduce programs:

$ hadoop fs -mkdir inputdir

We can check the result issuing a "ls" command on HDFS:

$ hadoop fs -ls
Found 1 items
drwxr-xr-x - mapred mrusers 0 2014-02-11 22:54 inputdir

Now we can decide which file we'll count the words of; in this example, I'll use the text of the novella Flatland by Edwin Abbot, which is freely available on gutemberg project for download:

$ wget http://www.gutenberg.org/cache/epub/201/pg201.txt

Now we can put this file onto the HDFS, more precisely into the inputdir dir we created a moment ago:

$ hadoop fs -put pg201.txt inputdir

The switch "-put" tells Hadoop to get the file from the machine's file system and to put it onto the HDFS filesystem. We can check that the file is really there:

$ hadoop fs -ls inputdir
Found 1 items
drwxr-xr-x - mapred mrusers 227368 2014-02-11 22:59 inputdir/pg201.txt

Now we're ready to execute the MapReduce program. Hadoop tarball comes with a JAR containing the WordCount example; we can launch Hadoop with these parameters:

  • jar: we're telling Hadoop we want to execute a mapreduce program contained in a JAR
  • /opt/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar: this is the absolute path and filename of the JAR
  • wordcount: tells Hadoop which of the many examples contained in the JAR to run
  • inputdir: the directory on HDFS in which Hadoop can find the input file(s)
  • outputdir: the directory on HDFS in which Hadoop must write the result of the program
$ hadoop jar /opt/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount inputdir outputdir

and the output is:

14/02/11 23:16:19 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/02/11 23:16:20 INFO input.FileInputFormat: Total input paths to process : 1
14/02/11 23:16:20 INFO mapreduce.JobSubmitter: number of splits:1
14/02/11 23:16:21 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/02/11 23:16:21 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
14/02/11 23:16:21 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/02/11 23:16:21 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/02/11 23:16:21 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/02/11 23:16:21 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1392155226604_0001
14/02/11 23:16:22 INFO impl.YarnClientImpl: Submitted application application_1392155226604_0001 to ResourceManager at /0.0.0.0:8032
14/02/11 23:16:23 INFO mapreduce.Job: The url to track the job: http://hadoop-VirtualBox:8088/proxy/application_1392155226604_0001/
14/02/11 23:16:23 INFO mapreduce.Job: Running job: job_1392155226604_0001
14/02/11 23:16:38 INFO mapreduce.Job: Job job_1392155226604_0001 running in uber mode : false
14/02/11 23:16:38 INFO mapreduce.Job: map 0% reduce 0%
14/02/11 23:16:47 INFO mapreduce.Job: map 100% reduce 0%
14/02/11 23:16:57 INFO mapreduce.Job: map 100% reduce 100%
14/02/11 23:16:58 INFO mapreduce.Job: Job job_1392155226604_0001 completed successfully
14/02/11 23:16:58 INFO mapreduce.Job: Counters: 43
File System Counters
FILE: Number of bytes read=121375
FILE: Number of bytes written=401139
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=227485
HDFS: Number of bytes written=88461
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=7693
Total time spent by all reduces in occupied slots (ms)=7383
Map-Reduce Framework
Map input records=4239
Map output records=37680
Map output bytes=366902
Map output materialized bytes=121375
Input split bytes=117
Combine input records=37680
Combine output records=8341
Reduce input groups=8341
Reduce shuffle bytes=121375
Reduce input records=8341
Reduce output records=8341
Spilled Records=16682
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=150
CPU time spent (ms)=5490
Physical memory (bytes) snapshot=399077376
Virtual memory (bytes) snapshot=1674149888
Total committed heap usage (bytes)=314048512
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=227368
File Output Format Counters
Bytes Written=88461

The last part of the output is a summary of the execution of the mapreduce program; just before this, we can spot the "Job job_1392155226604_0001 completed successfully" line, which tells us the mapreduce program has been executed successfully. As told, Hadoop wrote the output onto the outputdir on HDFS; let's see what's inside this dir:

$ hadoop fs -ls outputdir
Found 2 items
-rw-r--r-- 1 mapred mrusers 0 2014-02-11 23:16 outputdir/_SUCCESS
-rw-r--r-- 1 mapred mrusers 88461 2014-02-11 23:16 outputdir/part-r-00000

The presence of the _SUCCESS file confirms us the successful execution of the job; in the part-r-00000 Hadoop wrote the result of the execution. We can bring the file up to the filesystem of our machine using the "get" switch:

$ hadoop fs -get outputdir/part-r-00000 .

Now we can see the content of the file (this is a small subset of the whole file):

...
leading 2
leagues 1
leaning 1
leap 1
leaped 1
learn 7
learned 1
least 23
least. 1
leave 3
leaves 3
leaving 2
lecture 1
led 4
left 9
...

The wordcount program just count the occurrences of every single word and outputs it. 
Well, we've successfully run our first mapreduce job on our Hadoop installation!

 
from: http://andreaiacono.blogspot.com/2014/02/running-hadoop-example.html

运行Hadoop的示例程序WordCount-Running Hadoop Example的更多相关文章

  1. hadoop第一个程序WordCount

    hadoop第一个程序WordCount package test; import org.apache.hadoop.mapreduce.Job; import java.io.IOExceptio ...

  2. Hadoop示例程序WordCount编译运行

    首先确保Hadoop已正确安装及运行. 将WordCount.java拷贝出来 $ cp ./src/examples/org/apache/hadoop/examples/WordCount.jav ...

  3. Hadoop Map/Reduce 示例程序WordCount

    #进入hadoop安装目录 cd /usr/local/hadoop #创建示例文件:input #在里面输入以下内容: #Hello world, Bye world! vim input #在hd ...

  4. (转载)Hadoop示例程序WordCount详解

    最近在学习云计算,研究Haddop框架,费了一整天时间将Hadoop在Linux下完全运行起来,看到官方的map-reduce的demo程序WordCount,仔细研究了一下,算做入门了. 其实Wor ...

  5. Hadoop示例程序WordCount详解及实例(转)

    1.图解MapReduce 2.简历过程: Input: Hello World Bye World Hello Hadoop Bye Hadoop Bye Hadoop Hello Hadoop M ...

  6. [MapReduce_1] 运行 Word Count 示例程序

    0. 说明 MapReduce 实现 Word Count 示意图 && Word Count 代码编写 1. MapReduce 实现 Word Count 示意图 1. Map:预 ...

  7. CC2650LaunchPad 运行contiki hello-world示例程序

    最近做毕设,开始接触contiki. 下载并运行Instant Contiki 3.0 这是官方制作的虚拟机镜像,直接用vmware等工具就可以运行. 从这里下载. 下载并解压后,用vmware运行. ...

  8. 用Python语言写Hadoop MapReduce程序Writing an Hadoop MapReduce Program in Python

    In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python pr ...

  9. IDEA Maven Hadoop调试hdfs程序

    IDEA 远程调试 Hadoop 两大特色:一是采用maven的pom配置:二是直接连接hdfs:9000端口,无须另外在服务端配置参数. 其实内容包含了两种方式:本地与远程调试.这里仅仅只是使用远程 ...

随机推荐

  1. beego orm操作mysql数据库

    慢慢弄起来~~ 按官方操作文档试一下. 那个err重复和user编号问题,以后再弄.. package main import ( "fmt" "github.com/a ...

  2. python 分词库jieba

    算法实现: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字 ...

  3. Rookey.Frame v1.0快速开发平台-用户登录

    上一次介绍的了Rookey.Frame v1.0快速开发平台的整体功能,接下来会对各个功能点进行解析说明,今天给大家介绍下系统登录功能. 用户登录 系统中基本上所有功能页面都是从后台代码拼接后返回的, ...

  4. js:防抖动与节流【转载】

    源文:https://blog.csdn.net/crystal6918/article/details/62236730#reply <!DOCTYPE html> <html l ...

  5. LoadRunner监控Linux资源

    一.LoadRunner监控Linux资源 (一).准备工作 首先,监视Linux一定要有rstatd这个守护进程,有的Linux版本里也有可能是rpc.rstatd这里只是名字不同而已,功能是一样的 ...

  6. Node.js 的异步机制由事件和回调函数——循环中的回调函数

    var fs=require('fs'); var files =['a.txt','b.txt','c.txt']; // for (var i = 0; i < files.length; ...

  7. java项目建立流程

    spring mvc 书籍Spring in Action, 4th Edition java项目建立流程 1 使用maven来管理项目中的库.先用marven建立一个框架mvn archetype: ...

  8. 15、Spark Streaming源码解读之No Receivers彻底思考

    在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Appr ...

  9. Linux Shell 文本处理工具

    Linux下使用Shell处理文本时最常用的工具: find.grep.xargs.sort.uniq.tr.cut.paste.wc.sed.awk: 提供的例子和参数都是最常用和最为实用的: 我对 ...

  10. PHP获取以为数组中的最大值和最小值

    1.PHP获取一维数组中的最大值 <?php $a=array('1','3','55','99'); $pos = array_search(max($a), $a); echo $a[$po ...