转自:http://blog.csdn.net/gzlaiyonghao/article/details/1852726

 最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是做一下实验,那用 Python 来作原型开发再好不过了。在 Python 中,比较常用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.6 ,用起来非常方便。大家可以在 http://www.pythonware.com/products/pil/index.htm 下载和学习。
       在这里,我主要是介绍一下做图像识别时可能会用到的一些 PIL 提供的功能,比如图像增强、还有滤波之类的。最后给出使用 Python 做图像处理与识别的优势与劣势。
基本图像处理
       使用 PIL 之前需要 import Image 模块:
import Image
       然后你就可以使用Image.open(‘xx.bmp’) 来打开一个位图文件进行处理了。打开文件你不用担心格式,也不用了解格式,无论什么格式,都只要把文件名丢给 Image.open 就可以了。真所谓 bmp、jpg、png、gif……,一个都不能少。
img = Image.open(‘origin.png’)    # 得到一个图像的实例对象 img
图 1原图
       图像处理中,最基本的就是色彩空间的转换。一般而言,我们的图像都是 RGB 色彩空间的,但在图像识别当中,我们可能需要转换图像到灰度图、二值图等不同的色彩空间。 PIL 在这方面也提供了极完备的支持,我们可以:
new_img = img.convert(‘L’)
把 img 转换为 256 级灰度图像, convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)
怎么样,够丰富吧?其实如此之处,PIL 还有限制地支持以下几种比较少见的色彩模式:LA (L with alpha), RGBX (true colour with padding) and RGBa (true colour with premultiplied alpha)。
下面看一下 mode 为 ‘1’、’L’、’P’时转换出来的图像:
图 2 mode = '1'
图 3 mode = 'L'
图 4 mode = 'P'
convert() 函数也接受另一个隐含参数 matrix,转换矩阵 matrix 是一个长度为4 或者16 tuple。下例是一个转换 RGB 空间到 CIE XYZ 空间的例子:
    rgb2xyz = (
        0.412453, 0.357580, 0.180423, 0,
        0.212671, 0.715160, 0.072169, 0,
        0.019334, 0.119193, 0.950227, 0 )
    out = im.convert("RGB", rgb2xyz)
       除了完备的色彩空间转换能力外, PIL 还提供了resize()、rotate()等函数以获得改变大小,旋转图片等几何变换能力,在图像识别方面,图像实例提供了一个 histogram() 方法来计算直方图,非常方便实用。
图像增强
       图像增强通常用以图像识别之前的预处理,适当的图像增强能够使得识别过程达到事半功倍的效果。 PIL 在这方面提供了一个名为 ImageEnhance 的模块,提供了几种常见的图像增强方案:
import ImageEnhance
enhancer = ImageEnhance.Sharpness(image)
for i in range(8):
    factor = i / 4.0
    enhancer.enhance(factor).show("Sharpness %f" % factor)
上面的代码即是一个典型的使用 ImageEnhance 模块的例子。 Sharpness 是 ImageEnhance 模块的一个类,用以锐化图片。这一模块主要包含如下几个类:Color、Brightness、Contrast和Sharpness。它们都有一个共同的接口 .enhance(factor) ,接受一个浮点参数 factor,标示增强的比例。下面看看这四个类在不同的 factor 下的效果
图 5 使用Color 进行色彩增强,factor 取值 [0, 4],步进 0.5
图 6 用 Birghtness 增强亮度,factor取值[0,4],步进0.5
图 7用 Contrast 增强对比度, factor 取值 [0,4],步进0.5
图 8用 Sharpness 锐化图像,factor取值 [0,4],步进0.5
图像 Filter
       PIL 在 Filter 方面的支持是非常完备的,除常见的模糊、浮雕、轮廓、边缘增强和平滑,还有中值滤波、ModeFilter等,简直方便到可以做自己做一个Photoshop。这些 Filter 都放置在 ImageFilter 模块中,ImageFilter主要包括两部分内容,一是内置的 Filter,如 BLUR、DETAIL等,另一部分是 Filter 函数,可以指定不同的参数获得不同的效果。示例如下:
import ImageFilter
im1 = im.filter(ImageFilter.BLUR)
im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter()) # same as MinFilter(3)
可以看到 ImageFilter 模块的使用非常简单,每一个 Filter 都只需要一行代码就可调用,开发效率非常高。
 
图 9使用 BLUR
图 10使用 CONTOUR
图 11使用 DETAIL
图 12使用 EMBOSS
图 13使用 EDGE_ENHANCE
图 14使用 EDGE_ENHANCE_MORE
图 15使用 FIND_EDGES
图 16使用 SHARPEN
图 17使用 SMOOTH
图 18使用 SMOOTH_MORE
       以上是几种内置的 Filter 的效果图,除此之外, ImageFilter 还提供了一些 Filter 函数,下面我们来看看这些可以通过参数改变行为的 Filter 的效果:
图 19使用 Kernel(),参数:size = (3, 3), kernel = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
图 20使用 MaxFilter,默认参数
图 21使用 MinFilter,默认参数
图 22使用 MedianFilter,默认参数
图 23使用 ModeFilter,参数 size = 3
图 24使用 RankFilter,参数 size = 3, rank = 3
小结
       到此,对 PIL 的介绍就告一段落了。总的来说,对于图像处理和识别,PIL 内建了强大的支持,从各种增强算法到 Filter ,都让人无法怀疑使用 Python 的可行性。 Python唯一的劣势在于执行时间过慢,特别是当实现一些计算量大的算法时候,需要极强的耐心。我曾用 Hough Transform(霍夫变换)来查找图像中的直线,纯 Python 的实现处理一个 340 * 100 的图片也要花去数秒时间(P4 3.0G + 1G memory)。但使用 PIL 无需关注图像格式、内建的图像增强算法和 Filter 算法,这些优点使 Python 适合用于构造原型和进行实验,在这两方面Python 比 matlab 更加方便。商业的图像识别产品开发,可以考虑已经被 boost accepted的来自 adobe 的开源 C++ 库 gil,可以兼顾执行性能和开发效率。

用Python做图像处理的更多相关文章

  1. 在python3下用PIL做图像处理

    Python Imaging Library (PIL)是python下的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能. 目前PIL的官方最新版本为1.1.7,支持的版本为python ...

  2. Python 之 使用 PIL 库做图像处理

    http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html Python 之 使用 PIL 库做图像处理 1. 简介. 图像 ...

  3. [转]Python 之 使用 PIL 库做图像处理

    Python 之 使用 PIL 库做图像处理 1. 简介. 图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴.PIL (Python Imaging ...

  4. 一步一步教你如何用Python做词云

    前言 在大数据时代,你竟然会在网上看到的词云,例如这样的. 看到之后你是什么感觉?想不想自己做一个? 如果你的答案是正确的,那就不要拖延了,现在我们就开始,做一个词云分析图,Python是一个当下很流 ...

  5. python PIL 图像处理库简介(一)

    1. Introduction     PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处 ...

  6. python PIL 图像处理

    python PIL 图像处理 This blog is from: https://www.jianshu.com/p/e8d058767dfa Image读出来的是PIL的类型,而skimage. ...

  7. python skimage图像处理(一)

    python skimage图像处理(一) This blog is from: https://www.jianshu.com/p/f2e88197e81d 基于python脚本语言开发的数字图片处 ...

  8. python PIL图像处理库

    1. Introduction PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了. ...

  9. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

随机推荐

  1. HIVE学习(待更新)

    1 安装hive 下载 http://mirrors.shu.edu.cn/apache/hive/hive-1.2.2/,红框中的不需要编译. 由于hive是默认将元数据保存在本地内嵌的 Derby ...

  2. 键盘对应数字-keycode值大全(转)

    event.keycode值大全   keycode 8 = BackSpace BackSpace    keycode 9 = Tab Tab    keycode 12 = Clear    k ...

  3. OpenCL将数组从内存copy到显存

    本来想对上一篇博客做优化,优化效果不明显.但知识点还是要记一下. 初衷是想把上一篇博客中定义域的计算搬到CPU来计算,因为定义域的计算对于每一个kernel都是一样的,所以直接读取应该是可以进一步减小 ...

  4. vue.js的安装部署+cnpm install 安装过程卡住不动----亲测可用

    1.到Node.js的官网下载node node.js的下载地址,下载完成后,我在d盘新建一个文件夹“node”, 安装到node目录下(安装之后环境变量自动配置了,自己无需再配),比如我的安装路径是 ...

  5. C#学习历程(六)[ref 关键字的使用]

    ref 关键字的使用 ref 关键字通过引用(而非值)传递参数. 通过引用传递的效果是,对所调用方法中的参数进行的任何更改都反映在调用方法中. 例如,如果调用方传递本地变量表达式或数组元素访问表达式, ...

  6. ElementTree之Xml文档处理

    ElementTree: 表示整个XML层级结构 Element: 表示树形结构中所有的父节点 SubElement: 表示树形结构中所有的子节点 有些节点既是父节点,又是子节点 下面来看下这两个类的 ...

  7. Bing的Translation API 接入

    参考: https://msdn.microsoft.com/zh-cn/library/mt146806.aspx 首先你需要一个Microsoft的帐号,如果没有在这里注册一下 https://s ...

  8. DRF中序列化器定义及使用

    首先需要明白序列化和反序列化的定义及作用: 序列化是将程序语言转换为JSON/XML; 反序列化是将JSON/XML转换为程序语言; 对应到Django中,序列化即把模型对象转换为字典形式, 在返回给 ...

  9. 马士兵_JAVA自学之路(为那些目标模糊的码农们)

    转载自:http://blog.csdn.net/anlidengshiwei/article/details/42264301 JAVA自学之路 一:学会选择 为了就业,不少同学参加各种各样的培训. ...

  10. tomcat的安装和配置

    本人java开发的菜鸟工程师,这几天学习了tomcat的安装和使用,终于在今天运行成功. 一.tomcat的安装 1.tomcat下载网址:http://tomcat.apache.org/ 2.打开 ...