转自:http://blog.csdn.net/gzlaiyonghao/article/details/1852726

 最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是做一下实验,那用 Python 来作原型开发再好不过了。在 Python 中,比较常用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.6 ,用起来非常方便。大家可以在 http://www.pythonware.com/products/pil/index.htm 下载和学习。
       在这里,我主要是介绍一下做图像识别时可能会用到的一些 PIL 提供的功能,比如图像增强、还有滤波之类的。最后给出使用 Python 做图像处理与识别的优势与劣势。
基本图像处理
       使用 PIL 之前需要 import Image 模块:
import Image
       然后你就可以使用Image.open(‘xx.bmp’) 来打开一个位图文件进行处理了。打开文件你不用担心格式,也不用了解格式,无论什么格式,都只要把文件名丢给 Image.open 就可以了。真所谓 bmp、jpg、png、gif……,一个都不能少。
img = Image.open(‘origin.png’)    # 得到一个图像的实例对象 img
图 1原图
       图像处理中,最基本的就是色彩空间的转换。一般而言,我们的图像都是 RGB 色彩空间的,但在图像识别当中,我们可能需要转换图像到灰度图、二值图等不同的色彩空间。 PIL 在这方面也提供了极完备的支持,我们可以:
new_img = img.convert(‘L’)
把 img 转换为 256 级灰度图像, convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)
怎么样,够丰富吧?其实如此之处,PIL 还有限制地支持以下几种比较少见的色彩模式:LA (L with alpha), RGBX (true colour with padding) and RGBa (true colour with premultiplied alpha)。
下面看一下 mode 为 ‘1’、’L’、’P’时转换出来的图像:
图 2 mode = '1'
图 3 mode = 'L'
图 4 mode = 'P'
convert() 函数也接受另一个隐含参数 matrix,转换矩阵 matrix 是一个长度为4 或者16 tuple。下例是一个转换 RGB 空间到 CIE XYZ 空间的例子:
    rgb2xyz = (
        0.412453, 0.357580, 0.180423, 0,
        0.212671, 0.715160, 0.072169, 0,
        0.019334, 0.119193, 0.950227, 0 )
    out = im.convert("RGB", rgb2xyz)
       除了完备的色彩空间转换能力外, PIL 还提供了resize()、rotate()等函数以获得改变大小,旋转图片等几何变换能力,在图像识别方面,图像实例提供了一个 histogram() 方法来计算直方图,非常方便实用。
图像增强
       图像增强通常用以图像识别之前的预处理,适当的图像增强能够使得识别过程达到事半功倍的效果。 PIL 在这方面提供了一个名为 ImageEnhance 的模块,提供了几种常见的图像增强方案:
import ImageEnhance
enhancer = ImageEnhance.Sharpness(image)
for i in range(8):
    factor = i / 4.0
    enhancer.enhance(factor).show("Sharpness %f" % factor)
上面的代码即是一个典型的使用 ImageEnhance 模块的例子。 Sharpness 是 ImageEnhance 模块的一个类,用以锐化图片。这一模块主要包含如下几个类:Color、Brightness、Contrast和Sharpness。它们都有一个共同的接口 .enhance(factor) ,接受一个浮点参数 factor,标示增强的比例。下面看看这四个类在不同的 factor 下的效果
图 5 使用Color 进行色彩增强,factor 取值 [0, 4],步进 0.5
图 6 用 Birghtness 增强亮度,factor取值[0,4],步进0.5
图 7用 Contrast 增强对比度, factor 取值 [0,4],步进0.5
图 8用 Sharpness 锐化图像,factor取值 [0,4],步进0.5
图像 Filter
       PIL 在 Filter 方面的支持是非常完备的,除常见的模糊、浮雕、轮廓、边缘增强和平滑,还有中值滤波、ModeFilter等,简直方便到可以做自己做一个Photoshop。这些 Filter 都放置在 ImageFilter 模块中,ImageFilter主要包括两部分内容,一是内置的 Filter,如 BLUR、DETAIL等,另一部分是 Filter 函数,可以指定不同的参数获得不同的效果。示例如下:
import ImageFilter
im1 = im.filter(ImageFilter.BLUR)
im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter()) # same as MinFilter(3)
可以看到 ImageFilter 模块的使用非常简单,每一个 Filter 都只需要一行代码就可调用,开发效率非常高。
 
图 9使用 BLUR
图 10使用 CONTOUR
图 11使用 DETAIL
图 12使用 EMBOSS
图 13使用 EDGE_ENHANCE
图 14使用 EDGE_ENHANCE_MORE
图 15使用 FIND_EDGES
图 16使用 SHARPEN
图 17使用 SMOOTH
图 18使用 SMOOTH_MORE
       以上是几种内置的 Filter 的效果图,除此之外, ImageFilter 还提供了一些 Filter 函数,下面我们来看看这些可以通过参数改变行为的 Filter 的效果:
图 19使用 Kernel(),参数:size = (3, 3), kernel = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
图 20使用 MaxFilter,默认参数
图 21使用 MinFilter,默认参数
图 22使用 MedianFilter,默认参数
图 23使用 ModeFilter,参数 size = 3
图 24使用 RankFilter,参数 size = 3, rank = 3
小结
       到此,对 PIL 的介绍就告一段落了。总的来说,对于图像处理和识别,PIL 内建了强大的支持,从各种增强算法到 Filter ,都让人无法怀疑使用 Python 的可行性。 Python唯一的劣势在于执行时间过慢,特别是当实现一些计算量大的算法时候,需要极强的耐心。我曾用 Hough Transform(霍夫变换)来查找图像中的直线,纯 Python 的实现处理一个 340 * 100 的图片也要花去数秒时间(P4 3.0G + 1G memory)。但使用 PIL 无需关注图像格式、内建的图像增强算法和 Filter 算法,这些优点使 Python 适合用于构造原型和进行实验,在这两方面Python 比 matlab 更加方便。商业的图像识别产品开发,可以考虑已经被 boost accepted的来自 adobe 的开源 C++ 库 gil,可以兼顾执行性能和开发效率。

用Python做图像处理的更多相关文章

  1. 在python3下用PIL做图像处理

    Python Imaging Library (PIL)是python下的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能. 目前PIL的官方最新版本为1.1.7,支持的版本为python ...

  2. Python 之 使用 PIL 库做图像处理

    http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html Python 之 使用 PIL 库做图像处理 1. 简介. 图像 ...

  3. [转]Python 之 使用 PIL 库做图像处理

    Python 之 使用 PIL 库做图像处理 1. 简介. 图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴.PIL (Python Imaging ...

  4. 一步一步教你如何用Python做词云

    前言 在大数据时代,你竟然会在网上看到的词云,例如这样的. 看到之后你是什么感觉?想不想自己做一个? 如果你的答案是正确的,那就不要拖延了,现在我们就开始,做一个词云分析图,Python是一个当下很流 ...

  5. python PIL 图像处理库简介(一)

    1. Introduction     PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处 ...

  6. python PIL 图像处理

    python PIL 图像处理 This blog is from: https://www.jianshu.com/p/e8d058767dfa Image读出来的是PIL的类型,而skimage. ...

  7. python skimage图像处理(一)

    python skimage图像处理(一) This blog is from: https://www.jianshu.com/p/f2e88197e81d 基于python脚本语言开发的数字图片处 ...

  8. python PIL图像处理库

    1. Introduction PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了. ...

  9. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

随机推荐

  1. jQuery中兄弟元素、子元素和父元素的获取

    我们这里主要总结jQuery中对某元素的兄弟元素.子元素和父元素的获取,原声的Javascript代码对这些元素的获取比较麻烦一些,而jQuery正好对这些方法进行封装,让我们更加方便的对这些元素进行 ...

  2. Attribute 'items' must be an array, a Collection or a Map错误解决!

    唉!真的要说一句话叫做论一串代码的重要性!就是如此的气人!气的牙根痒痒! 前几天刚刚写过SpringMVC之ModelAndView的 jsp值在浏览页面不显示的问题!也是因为这一串代码,但是这一次一 ...

  3. 联表更新SQL语句

    联表更新语句第一次写,,,主要是在实现功能上需要向repay_detail添加一个新的字段item_id.但是以前的老数据的话这个字段的值就为null 所以就写了下面一条语句就更新了老数据...SQL ...

  4. Python之坐标轴刻度细化、坐标轴设置、标题图例添加

    学习python中matplotlib绘图设置坐标轴刻度.文本 http://www.jb51.net/article/134638.htm Python绘图 https://www.cnblogs. ...

  5. js字符串操作方法

    1.字符方法: str.charAt(): 可以访问字符串中特定的字符,可以接受0至字符串长度-1的数字作为参数,返回该位置下的字符,如果参数超出该范围,返回空字符串,如果没有参数,返回位置为0的字符 ...

  6. 【hive】关于浮点数比较的问题

    当在hive中写下浮点数(例如:0.2) hive会把浮点数(0.2)存储为double类型 但是系统中并不能精准表示0.2这个浮点数 正确的浮点数表示 float   0.2 —> 0.200 ...

  7. C++复习4.函数设计基础

    C/C++ 函数设计基础 20130918 函数式程序的基本功能单元,是模块化程序设计的基础,即使函数的功能正确是不够的,因为函数设计的细微缺点很容易导致函数被错用. 了解函数的基本知识,堆栈和堆的相 ...

  8. 转载:【Oracle 集群】RAC知识图文详细教程(五)--特殊问题和实战经验

    文章导航 集群概念介绍(一) ORACLE集群概念和原理(二) RAC 工作原理和相关组件(三) 缓存融合技术(四) RAC 特殊问题和实战经验(五) ORACLE 11 G版本2 RAC在LINUX ...

  9. 二十、dbms_stats(用于搜集,查看,修改数据库对象的优化统计信息)

    1.概述 作用:用于搜集,查看,修改数据库对象的优化统计信息. 2.包的组成 1).get_column_stats作用:用于取得列的统计信息语法:dbms_stats.get_column_stat ...

  10. 关于Qt中使用线程的时候函数具体在哪个线程中运行的问题

    在子线程中,run函数中以及其中调用的都在单独的子线程里面运行,但是其他的类似构造函数之流都是在主线程里面运行的,不要搞混了