bzoj 5334 数学计算
bzoj 5334 数学计算
- 开始想直接模拟过程做,但模数 \(M\) 不一定为质数,若没有逆元就 \(fAKe\) 掉了.
- 注意到操作 \(2\) 是删除对应的操作 \(1\) ,相当于只有 \(1\) 操作,但每个操作有一个生效的时限.
- 将所有操作离线下来,用一颗线段树维护每个时间的答案.对于操作 \(1\) ,预处理出生效的时限后,区间修改那一段即可.注意有没有删除的情况,右端点设为 \(Q\) .
- 预处理结束后,对每个操作可以一边改一边做,后面的操作显然不会对这里的答案造成影响.
- 时间复杂度为 \(O(QlogQ)\) .
原来这东西是叫线段树分治.之前我就叫做是离线后线段树上乱搞...
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pii pair<int,int>
inline int read()
{
int out=0,sgn=1;
char jp=getchar();
while(jp!='-' && (jp<'0' || jp>'9'))
jp=getchar();
if(jp=='-')
sgn=-1,jp=getchar();
while(jp>='0' && jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*sgn;
}
const int MAXN=1e5+10;
int Q,P;
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
int fpow(int a,int b)
{
int res=1;
while(b)
{
if(b&1)
res=mul(res,a);
a=mul(a,a);
b>>=1;
}
return res%P;
}
struct query{
int op,m,r;
}q[MAXN];
namespace SEG{
struct node{
int l,r;
int prod,tag;
}Tree[MAXN<<2];
#define root Tree[o]
#define lson Tree[o<<1]
#define rson Tree[o<<1|1]
void BuildTree(int o,int l,int r)
{
root.l=l,root.r=r;
root.prod=1,root.tag=1;
if(l==r)
return;
int mid=(l+r)>>1;
BuildTree(o<<1,l,mid);
BuildTree(o<<1|1,mid+1,r);
}
void Modifiy(int o,int v)
{
root.prod=mul(root.prod,v);
root.tag=mul(root.tag,v);
}
void pushdown(int o)
{
if(root.tag!=1)
{
Modifiy(o<<1,root.tag);
Modifiy(o<<1|1,root.tag);
root.tag=1;
}
}
void update(int o,int L,int R,int v)
{
int l=root.l,r=root.r;
if(l>R || L>r)
return;
if(L<=l && r<=R)
{
Modifiy(o,v);
return;
}
pushdown(o);
update(o<<1,L,R,v);
update(o<<1|1,L,R,v);
}
int query(int o,int pos)
{
int l=root.l,r=root.r;
if(l==r)
return root.prod;
if(pos<l || pos>r)
return 1;
int mid=(l+r)>>1;
pushdown(o);
if(pos<=mid)
return query(o<<1,pos);
else
return query(o<<1|1,pos);
}
}
int main()
{
int T=read();
while(T--)
{
Q=read(),P=read();
for(int i=1;i<=Q;++i)
{
int op=read();
q[i].op=op;
if(op==1)
q[i].m=read(),q[i].r=Q+1;
else
{
int pos=read();
q[pos].r=i;
}
}
SEG::BuildTree(1,1,Q);
for(int i=1;i<=Q;++i)
{
if(q[i].op==1)
{
int l=i,r=q[i].r;
SEG::update(1,l,r-1,q[i].m);
int ans=SEG::query(1,l);
printf("%d\n",ans);
}
else
{
int ans=SEG::query(1,i);
printf("%d\n",ans);
}
}
}
return 0;
}
bzoj 5334 数学计算的更多相关文章
- 【线段树】BZOJ 5334 数学计算
题目内容 小豆现在有一个数\(x\),初始值为\(1\).小豆有\(Q\)次操作,操作有两种类型: 1 m:\(x=x×m\),输出\(x\ mod\ M\): 2 pos:\(x=x/\)第\(po ...
- BZOJ 5334--[Tjoi2018]数学计算(线段树)
5334: [Tjoi2018]数学计算 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 220 Solved: 147[Submit][Status ...
- 【BZOJ5334】数学计算(线段树)
[BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...
- BZOJ5334: [Tjoi2018]数学计算
BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...
- [Tjoi2018]数学计算
[Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...
- 理工科应该的知道的C/C++数学计算库(转)
理工科应该的知道的C/C++数学计算库(转) 作为理工科学生,想必有限元分析.数值计算.三维建模.信号处理.性能分析.仿真分析...这些或多或少与我们常用的软件息息相关,假如有一天你只需要这些大型软件 ...
- Shell之数学计算
本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 数学计算是Shell中比较常用的一种操作, 但是因为shell中所有的变量都默认为字符串, ...
- Shell脚本笔记(三)shell中的数学计算
shell中的数学计算 一.使用方括号 #!/bin/bash a= b= c= res=$[$a * ($c-$b)] echo $res 二.使用(()) +)) ((i=+)) b=$((-*) ...
- C语言中几个常用数学计算函数ceil(), floor(), round()的用法
最近在实现算法的过程中,遇到了使用几个数学计算函数,感觉挺有意思,就记下来 方便以后使用. ceil(x)返回不小于x的最小整数值(然后转换为double型). floor(x)返回不大于x的最大整数 ...
随机推荐
- base64 原理
Base64编码之所以称为Base64,是因为其使用64个字符来对任意数据进行编码,同理有Base32.Base16编码.标准Base64编码使用的64个字符为: 这64个字符是各种字符编码(比如AS ...
- bind、delegate、on的区别
on(type,[data],fn) on有三个参数,type代表事件类型,可以为“click"."onchange"."mouseover" dat ...
- 初次安装git配置用户名和邮箱及密钥
在Windows上安装Git: 在Windows上使用Git,可以从Git官网直接下载安装程序,(网速慢的同学请移步国内镜像),然后按默认选项安装即可. 安装完成后 键盘敲上:windows+r你会看 ...
- 005——数组(五)array_diff_ukey()array_diff_uassoc()array_intersect()array_intersect_assoc()array_intersect_key()array_intersect_ukey()array_intersect_uassoc()
<?php function dump($arr) { print_r($arr); } /**array_diff_ukey() 通过回调函数的方式,返回一个数组在其他数组中不存在键名的值 * ...
- java中容器的学习与理解
以前一直对于java中容器的概念不理解,虽然学习过,但始终没有认真理解过,这几天老师提出了这样一个问题,你怎么理解java中的容器.瞬间就蒙了.于是各种搜资料学习了一下,下面是我学习后整理出来的的一些 ...
- firefox与ie 的javascript区别
1. Document.form.item 问题 现有问题: 现有代码中存在许多 document.formName.item("itemName") 这样的语句,不能在 ...
- 让nodejs在iis上运行
node在IIS上运行的好处: Tomasz的回答是我见过最棒的: 使用iisnode模块在IIS中托管node.js应用程序来取代自托管node.exe进程的优势在于: · 进程管理. Iisnod ...
- Spring简单与数据库连接
1.导入需要的jar包 2.配置数据源,在applicationContext.xml文件中增加配置 方式1:直接使用bean方式 1 2 3 4 5 6 <bean id="data ...
- PHP exec()函数的介绍和使用DEMO
exec()函数用来执行一个外部程序,我们再用这函数基本是在linux. 开启exec()函数: exec()函数是被禁用的,要使用这个函数必须先开启.首先是 要关掉 安全模式 safe_mode = ...
- 老鼠走迷宫(2)输出所有路径(C语言)
需求 有一个迷宫,在迷宫的某个出口放着一块奶酪.将一只老鼠由某个入口处放进去,它必须穿过迷宫,找到奶酪.请找出它的行走路径. STEP 1 题目转化 我们用一个二维数组来表示迷宫,用2表示迷宫的墙壁, ...