题目链接

静态区间逆序对数查询,这道题用线段树貌似不好做,可以把区间分成$\sqrt n$块,预处理出两个数组:$sum[i][j]$和$inv[i][j]$,$sum[i][j]$表示前i个块中小于等于j的数的个数,$inv[i][j]$表示第i块与第j块之间的逆序对数,递推搞一下就行。查询的时候中间的部分直接查询,两边多出来的部分暴力计算贡献即可。总复杂度$O(n\sqrt nlogn)$

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e4+,sqrtN=,inf=0x3f3f3f3f;
int a[N],b[N],c[N],n2,in[N],L[sqrtN],R[sqrtN],n,m,sqrtn,nb;
int sum[sqrtN][N],inv[sqrtN][sqrtN];
void add(int u,int x) {for(; u<=n2; u+=u&-u)c[u]+=x;}
int get(int u) {int ret=; for(; u; u-=u&-u)ret+=c[u]; return ret;}
int main() {
scanf("%d",&n),sqrtn=sqrt(n+0.5);
for(int i=; i<=n; ++i)scanf("%d",&a[i]);
for(int i=; i<=n; ++i)b[i-]=a[i];
sort(b,b+n),n2=unique(b,b+n)-b;
for(int i=; i<=n; ++i)a[i]=lower_bound(b,b+n2,a[i])-b+;
for(int i=; i<=n; ++i) {nb=in[i]=i/sqrtn+; if(!L[in[i]])L[in[i]]=i; R[in[i]]=i;}
for(int i=; i<=nb; ++i) {
for(int j=L[i]; j<=R[i]; ++j)sum[i][a[j]]++;
for(int j=; j<=n; ++j)sum[i][j]+=sum[i][j-];
for(int j=; j<=n; ++j)sum[i][j]+=sum[i-][j];
}
for(int i=; i<=nb; ++i) {
for(int j=R[i]; j>=L[i]; --j)inv[i][i]+=get(a[j]-),add(a[j],);
for(int j=R[i]; j>=L[i]; --j)add(a[j],-);
}
for(int i=; i<=nb; ++i)
for(int j=i+; j<=nb; ++j) {
for(int k=L[j]; k<=R[j]; ++k)inv[i][j]+=(R[j-]-L[i]+)-(sum[j-][a[k]]-sum[i-][a[k]]);
inv[i][j]+=inv[i][j-]+inv[j][j];
}
scanf("%d",&m);
for(int ans=; m--;) {
int l,r;
scanf("%d%d",&l,&r),l^=ans,r^=ans,ans=;
if(in[l]==in[r]) {
for(int i=r; i>=l; --i)ans+=get(a[i]-),add(a[i],);
for(int i=r; i>=l; --i)add(a[i],-);
} else {
int lb=in[l]+,rb=in[r]-;
if(lb<=rb) {
ans+=inv[lb][rb];
for(int i=r; i>=L[in[r]]; --i)ans+=(R[rb]-L[lb]+)-(sum[rb][a[i]]-sum[lb-][a[i]]);
for(int i=R[in[l]]; i>=l; --i)ans+=sum[rb][a[i]-]-sum[lb-][a[i]-];
}
for(int i=r; i>=L[in[r]]; --i)ans+=get(a[i]-),add(a[i],);
for(int i=R[in[l]]; i>=l; --i)ans+=get(a[i]-),add(a[i],);
for(int i=r; i>=L[in[r]]; --i)add(a[i],-);
for(int i=R[in[l]]; i>=l; --i)add(a[i],-);
}
printf("%d\n",ans);
}
return ;
}

BZOJ - 3744 Gty的妹子序列 (区间逆序对数,分块)的更多相关文章

  1. bzoj 3744 Gty的妹子序列 区间逆序对数(在线) 分块

    题目链接 题意 给定\(n\)个数,\(q\)个询问,每次询问\([l,r]\)区间内的逆序对数. 强制在线. 思路 参考:http://www.cnblogs.com/candy99/p/65795 ...

  2. bzoj 3744: Gty的妹子序列 主席树+分块

    3744: Gty的妹子序列 Time Limit: 15 Sec  Memory Limit: 128 MBSubmit: 101  Solved: 34[Submit][Status] Descr ...

  3. BZOJ 3744 Gty的妹子序列 (分块 + BIT)

    3744: Gty的妹子序列 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1931  Solved: 570[Submit][Status][Dis ...

  4. BZOJ 3744: Gty的妹子序列 【分块 + 树状数组 + 主席树】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3744 3744: Gty的妹子序列 Time Limit: 20 Sec  Memory ...

  5. BZOJ 3744 Gty的妹子序列

    Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见-- 某天,蒟蒻Autumn发现了从 Gty的妹子树上掉落下来了许多妹子,他发现 她们排成了一个序 ...

  6. BZOJ 3744: Gty的妹子序列 [分块]

    传送门 题意:询问区间内逆序对数 感觉这种题都成套路题了 两个预处理$f[i][j]$块i到j的逆序对数,$s[i][j]$前i块$\le j$的有多少个 f我直接处理成到元素j,方便一点 用个树状数 ...

  7. BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)

    题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...

  8. BZOJ 3744 Gty的妹子序列 做法集结

    我只会O(nnlogn)O(n\sqrt nlogn)O(nn​logn)的 . . . . 这是分块+树状数组+主席树的做法O(nnlogn)O(n\sqrt nlogn)O(nn​logn) 搬来 ...

  9. BZOJ 3744 Gty的妹子序列 分块+树状数组

    具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nn​logn) CODE #include <cmath> #include <cctyp ...

随机推荐

  1. SpringBoot创建定时任务

    之前总结过spring+quartz实现定时任务的整合http://www.cnblogs.com/gdpuzxs/p/6663725.html,而springboot创建定时任务则是相当简单. (1 ...

  2. python学习笔记glob模块

    python有许多的类库,现将学习记录下来,以供以后回顾复习: 1.glob模块 用于文件名操作,匹配指定目录下的文件,返回的是目录加文件名,常用的有两个函数: glob(pattern),返回匹配的 ...

  3. Javascript实用技巧

    1. 给参数赋默认值 //通常写法 function dateRender(format){ if(format){ format = 'Y-m-d'; } // code } //强推 functi ...

  4. QT 样式表实例

    目标:实现button的圆角效果及背景颜色,鼠标滑过颜色变亮,鼠标点击颜色变重. 总体思路首,先根据需要及样式规则新建.qss文件,然后在代码中将文件引用并应用样式. 具体过程如下: 1在项目当前目录 ...

  5. sqlserver 遍历表

    use Research go ); ) NOT NULL, [mrs] date); DECLARE Table_Cursor CURSOR FOR--包含有列‘sigdate’的表 select ...

  6. jQuery实际案例④——360导航图片效果

    如图:①首先使用弹性盒子布局display:flex; flex-wrap:wrap; ②鼠标移上去出现“百度一下,你就知道了”,这句话之前带上各个网站的logo:③logo使用的是sprite,需要 ...

  7. Apache的三种工作模式及相关配置

    Apache的三种工作模式 作为老牌服务器,Apache仍在不断地发展,就目前来说,它一共有三种稳定的MPM(Multi-Processing Module,多进程处理模块).它们分别是 prefor ...

  8. python----tkinterm模块

    python tkinter学习——布局   目录 一.pack() 二.grid() 三.place() 四.Frame() 正文 布局 一.pack() pack()有以下几个常用属性: side ...

  9. Prism 4 文档 ---第3章 管理组件间的依赖关系

     基于Prism类库的应用程序可能是由多个松耦合的类型和服务组成的复杂应用程序,他们需要根据用户的动作发出内容和接收通知进行互动,由于他们是松耦合的,他们需要一种方式来互动和交流来传递业务功能的需求. ...

  10. 如何让history显示时间

    linux和unix上都提供了history命令,可以查询以前执行的命令历史记录但是,这个记录并不包含时间项目因此只能看到命令,但是不知道什么时间执行的如何让history记录时间呢? 解决方案 注意 ...