#include<cstring>
#include<cstdio>
#include<algorithm>
#include<set>
using namespace std;
int m,n;
int SG[1000001];
int sg(int x)
{
if(SG[x]!=-1) return SG[x];
if(!x) return SG[x]=0;
set<int>S;
int maxv=0,minv=2147483647;
int t=x;
while(t)
{
if(t%10)
{
maxv=max(t%10,maxv);
minv=min(t%10,minv);
}
t/=10;
}
S.insert(sg(x-maxv));
S.insert(sg(x-minv));
for(int i=0;;++i)
if(S.find(i)==S.end())
return SG[x]=i;
}
int main()
{
scanf("%d",&m);
memset(SG,-1,sizeof(SG));
for(;m;--m)
{
scanf("%d",&n);
puts(sg(n)?"YES":"NO");
}
return 0;
}

【博弈论】【SG函数】bzoj3404 [Usaco2009 Open]Cow Digit Game又见数字游戏的更多相关文章

  1. BZOJ3404: [Usaco2009 Open]Cow Digit Game又见数字游戏

    3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 47  Solved ...

  2. 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏

    3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 72  Solved ...

  3. 【BZOJ】3404: [Usaco2009 Open]Cow Digit Game又见数字游戏(博弈论)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3404 写挫好几次.... 裸的博弈论即可.. #include <cstdio> #in ...

  4. BZOJ 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏(博弈论)

    一开始被题意坑了= =,题目是说这个数字的最大和最小,不是个位的最大和最小= = 不知道怎么做只能递推了,必胜态就是存在能到达必败态的,必败态就是只能到达必胜态的 CODE: #include< ...

  5. 【BZOJ】【3404】【USACO2009 Open】Cow Digit Game又见数字游戏

    博弈论 Orz ZYF 从前往后递推……反正最大才10^6,完全可以暴力预处理每个数的状态是必胜还是必败(反正才两个后继状态),然后O(1)查询……我是SB /******************** ...

  6. BZOJ1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏

    1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5 ...

  7. 【基础操作】博弈论 / SG 函数详解

    博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updat ...

  8. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  9. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

随机推荐

  1. 2016广东工业大学校赛 E题 GDUT-oj1173

    Problem E: 积木积水 Description 现有一堆边长为1的已经放置好的积木,小明(对的,你没看错,的确是陪伴我们成长的那个小明)想知道当下雨天来时会有多少积水.小明又是如此地喜欢二次元 ...

  2. codeforces803D. Magazine Ad

    D. Magazine Adtime limit per test1 secondmemory limit per test256 megabytesinputstandard inputoutput ...

  3. Installing Jenkins to Centos Docker

    1.Install Docker CE to Centos7 [root@zoo1 ~]# yum install -y yum-utils device-mapper-persistent-data ...

  4. Android布局优化思考

    一.关于RelativeLayout和LinearLayout的使用 由源码可以知道,RelativeLayout需要对其子View进行两次measure过程,而LinearLayout只需一次mea ...

  5. CodeSmith和PowerDesigner (转)

    首先,既然要讲解如何使用CodeSmith和PowerDesigner快速生成批量代码,当然要先安装这2个软件啦,下面就简单说说如何安装破解这2款软件吧,当然破解只是学习之用,请大家不要用于商业用途哈 ...

  6. 查看jar包源码

    1.Maven项目 如下图设置后,它会自动下载源文件,这样就能看到了 2.传统Java项目 2.1.安装 Jad 下载 Jad :http://varaneckas.com/jad/ 解压到任意目录即 ...

  7. [bzoj4516][Sdoi2016]生成魔咒——后缀自动机

    Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...

  8. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式——后缀数组

    Brief Description 给定一个字符串,求至少出现k次的最长重复子串. Algorithm Design 先二分答案,然后将后缀分成若干组.判断有没有一个组的后缀个数不小于k.如果有,那么 ...

  9. 使用Frida简化Android端应用安全测试

    @author : Dlive 在对Android应用进行Web漏洞测试时,经常遇到一种情况:HTTP传输的数据带有签名字段 处理这种情况的方法通常是逆向签名算法,但是如果算法在so中,而且so加壳了 ...

  10. 【转】Linux Futex的设计与实现

    引子在编译2.6内核的时候,你会在编译选项中看到[*] Enable futex support这一项,上网查,有的资料会告诉你"不选这个内核不一定能正确的运行使用glibc的程序" ...