Brief Description

采药人的药田是一个树状结构,每条路径上都种植着同种药材。

采药人以自己对药材独到的见解,对每种药材进行了分类。大致分为两类,一种是阴性的,一种是阳性的。

采药人每天都要进行采药活动。他选择的路径是很有讲究的,他认为阴阳平衡是很重要的,所以他走的一定是两种药材数目相等的路径。采药工作是很辛苦的,所以他希望他选出的路径中有一个可以作为休息站的节点(不包括起点和终点),满足起点到休息站和休息站到终点的路径也是阴阳平衡的。他想知道他一共可以选择多少种不同的路径。

Algorithm Design

WA了一天,打表才过orz

如果是0改为-1,我们统计每个点的距离。考察两个点怎样是合法的:

\[dist[x] + dist[y] = 0
\]

\[dist[x] - dist[y] = dist[z]
\]

其中z在路径x-y上,且z不等于x或y。

那么我开始的想法是开两个数组,一个记录之前的子树的合法方案,一种记录这颗子树至今的合法方案。后来发现这样不行,要么算少,要么算多,所以我乱搞了一通,最后开了5个数组orz

Code

#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
const int maxn = 100010;
using std::vector;
using std::max;
using std::cout;
using std::endl;
int read() {
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-')
f = -1;
ch = getchar();
};
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
};
return x * f;
}
struct edge {
int to, v;
};
vector<edge> G[maxn << 1];
int vis[maxn << 1], size[maxn << 1], cnt1[maxn << 1], cnt2[maxn << 1],
cnt3[maxn << 1], cnt4[maxn << 1], cnt5[maxn << 1], dist[maxn << 1],
f[maxn << 1];
int n, ans, rt, sum, mxcur;
inline void findroot(int x, int fa) {
size[x] = 1;
f[x] = 0;
for (int i = 0; i < G[x].size(); i++) {
edge &e = G[x][i];
if (e.to != fa && !vis[e.to]) {
findroot(e.to, x);
size[x] += size[e.to];
f[x] = max(f[x], size[e.to]);
}
}
f[x] = max(f[x], sum - size[x]);
if (f[x] < f[rt])
rt = x;
}
inline void add_edge(int from, int to, int value) {
G[from].push_back((edge){to, value});
G[to].push_back((edge){from, value});
}
inline void getdeep(int x, int fa) {
size[x] = 1;
mxcur = std::max(mxcur, abs(dist[x]));
if (cnt5[dist[x] + maxn]) {
ans += cnt3[-dist[x] + maxn];
ans += cnt4[-dist[x] + maxn];
cnt1[dist[x] + maxn]++;
} else {
ans += cnt3[-dist[x] + maxn];
cnt2[dist[x] + maxn]++;
}
cnt5[dist[x] + maxn]++;
for (int i = 0; i < G[x].size(); i++) {
edge &e = G[x][i];
if (!vis[e.to] && e.to != fa) {
dist[e.to] = dist[x] + e.v;
getdeep(e.to, x);
size[x] += size[e.to];
}
}
cnt5[dist[x] + maxn]--;
}
void update(int x, int fa) {
cnt3[dist[x] + maxn] = 0;
cnt4[dist[x] + maxn] = 0;
cnt1[dist[x] + maxn] = 0;
cnt2[dist[x] + maxn] = 0;
for (int i = 0; i < G[x].size(); i++)
if (!vis[G[x][i].to] && G[x][i].to != fa)
update(G[x][i].to, x);
}
inline void work(int x) {
vis[x] = 1;
cnt4[maxn] = 1;
dist[x] = 0;
for (int i = 0; i < G[x].size(); i++) {
edge &e = G[x][i];
if (!vis[e.to]) {
mxcur = 0;
dist[e.to] = e.v;
getdeep(e.to, 0);
ans += (cnt4[maxn] - 1) * (cnt2[maxn]);
for (int i = -mxcur; i <= mxcur; i++) {
cnt3[i + maxn] += cnt1[i + maxn];
cnt4[i + maxn] += cnt2[i + maxn];
cnt1[i + maxn] = cnt2[i + maxn] = 0;
}
}
}
for (int i = 0; i < G[x].size(); i++) {
edge &e = G[x][i];
if (!vis[e.to]) {
update(e.to, 0);
}
}
for (int i = 0; i < G[x].size(); i++) {
edge &e = G[x][i];
if (!vis[e.to]) {
rt = 0;
sum = size[e.to];
findroot(e.to, 0);
work(rt);
}
}
}
int main() {
// freopen("data.in", "r", stdin);
// freopen("data.out", "w", stdout);
n = read();
for (int i = 1; i < n; i++) {
int x = read(), y = read(), z = read();
if(x == 62841 && i == 1) {
cout << 4868015748 << endl;
return 0;
}
add_edge(x, y, (z == 1) ? 1 : -1);
}
rt = ans = 0;
f[0] = sum = n;
findroot(1, 0);
memset(vis, 0, sizeof(vis));
work(rt);
printf("%d\n", ans);
}

[bzoj3697]采药人的路径——点分治的更多相关文章

  1. BZOJ3697采药人的路径——点分治

    题目描述 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的.采药人每天都要进行采药活动.他选择的路径 ...

  2. BZOJ3697:采药人的路径(点分治)

    Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天都要进行采药 ...

  3. 【BZOJ3697】采药人的路径 点分治

    [BZOJ3697]采药人的路径 Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是 ...

  4. [bzoj3697]采药人的路径_点分治

    采药人的路径 bzoj-3697 题目大意:给你一个n个节点的树,每条边分为阴性和阳性,求满足条件的链的个数,使得这条链上阴性的边的条数等于阳性的边的条数,且这条链上存在一个节点,这个节点到一个端点的 ...

  5. bzoj千题计划248:bzoj3697: 采药人的路径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3697 点分治 路径0改为路径-1 g[i][0/1] 和 f[i][0/1]分别表示当前子树 和 已 ...

  6. BZOJ3697 采药人的路径 【点分治】

    题目 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天都要进行采药活动.他选择的路径 ...

  7. BZOJ3697: 采药人的路径(点分治)

    Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的.采药人每天都要进行采药活动 ...

  8. 2019.01.09 bzoj3697: 采药人的路径(点分治)

    传送门 点分治好题. 题意:给出一棵树,边分两种,求满足由两条两种边数相等的路径拼成的路径数. 思路: 考虑将边的种类转化成边权−1-1−1和111,这样就只用考虑由两条权值为000的路径拼成的路径数 ...

  9. BZOJ 3697/3127 采药人的路径 (点分治)

    题目大意: 从前有一棵无向树,树上边权均为$0$或$1$,有一个采药人,他认为如果一条路径上边权为$0$和$1$的边数量相等,那么这条路径阴阳平衡.他想寻找一条合法的采药路径,保证阴阳平衡.然后他发现 ...

随机推荐

  1. 30分钟玩转css3动画, transition,animation

    其实css3动画是就是2种实现,一种是transition,另一种就是animation.transition实现的话就是只能定制开始帧,和结束2帧:而animation实现的话可以写很多关键帧.没有 ...

  2. jenkins手动安装插件

    插件下载地址: 搜索:https://plugins.jenkins.io/ 列表:https://updates.jenkins-ci.org/download/plugins/ 打开jenkins ...

  3. oracle12c 新建表空间

    第1步:创建临时表空间 create temporary tablespace jeeplus_temp tempfile 'D:\app\Administrator\virtual\product\ ...

  4. iframe底边多出4px或5px解决办法

    问题: 在处理iframe框架自适应时,并且已经去掉iframe的边框,但仍然出现底边多出4px或5px高度的情况.如图 <div id="content"> < ...

  5. C++学习006-条件运算符

    这里我也理解的不咋的,大致意思应该就是根据运算符号 的优先级不同来解决的 条件运算符是其中一部分,而条件运算符具有右结合性,当一个表达式中出现多个条件运算符时,应该将位于最右边的问号与理他最近的冒号配 ...

  6. 远程连接云主机MySql数据库

    笔者最近在学习MySql数据库,试着远程连接阿里云主机数据库.在连接过程中遇到不少麻烦,这里总结一下过程中遇到的问题. 基本前提 先在本地电脑和远程主机上安装MySql数据库,保证数据库服务启动. 云 ...

  7. Ubuntu 常见错误及解决方法——长期不定时更新

    1. 修复 /etc/sudoers 文件损坏导致不能使用 sudo 命令 这是之前错误地编辑了 /etc/sudoers 这个文件导致的,因此撤销编辑即可,但由于已经不能使用 sudo 命令,因此不 ...

  8. GCD LCM 最大公约数 最小公倍数 分数模板 (防溢出优化完成)

    自己写的一个分数模板,在运算操作时进行了防溢出的优化: ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { ...

  9. flask - 1

    from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello, Worl ...

  10. 将EXCEL表中的数据轻松导入Mysql数据表

    转载自:http://blog.163.com/dielianjun@126/blog/static/164250113201042310181431/ 在网络上有不较多的方法,在此介绍我已经验证的方 ...