gcd(a, b),就是求a和b的最大公约数

lcm(a, b),就是求a和b的最小公倍数

然后有个公式

a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) 简写你懂吗)

解释(不想看就跳过){

  首先,求一个gcd,然后。。。

  a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后。。。

  lcm = gcd *  (a / gcd) * (b / gcd)

  lcm = (a * b) / gcd

  所以。。a*b = gcd * lcm

}

所以要求lcm,先求gcd

辣么,问题来了,gcd怎么求

辗转相除法

while循环

LL gcd(LL a, LL b){
LL t;
while(b){
t = b;
b = a % b;
a = t;
}
return a;
}

还有一个递归写法

LL gcd(LL a, LL b){
if(b == 0) return a;
else return gcd(b, a%b);
} LL gcd(LL a, LL b){
return b ? gcd(b, a%b) : a;
}
//两种都可以

辣么,lcm = a * b / gcd

(注意,这样写法有可能会错,因为a * b可能因为太大  超出int  或者 超出 longlong)

所以推荐写成 : lcm = a / gcd * b

然后几个公式自己证明一下

gcd(ka, kb) = k * gcd(a, b)

lcm(ka, kb) = k * lcm(a, b)

上次做题碰到这个公式

lcm(S/a, S/b) = S/gcd(a, b)

S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。

当我看到右边那个公式。。。。

(╯°Д°)╯┻━┻

这TM我怎么想的到,给我证明倒是会证。 T_T

【附录】

这里给出使用欧几里得算法求最大公约数的递归和非递归的程序,同时给出穷举法求最大公约数的程序。

从计算时间上看,递推法计算速度最快。

程序中包含条件编译语句用于统计分析计算复杂度。

/*
* 计算两个数的最大公约数三种算法程序
*/ #include <stdio.h> //#define DEBUG
#ifdef DEBUG
int c1=, c2=, c3=;
#endif int gcd1(int, int);
int gcd2(int, int);
int gcd3(int, int); int main(void)
{
int m=, n=; printf("gcd1: %d %d result=%d\n", m, n, gcd1(m, n));
printf("gcd2: %d %d result=%d\n", m, n, gcd2(m, n));
printf("gcd3: %d %d result=%d\n", m, n, gcd3(m, n));
#ifdef DEBUG
printf("c1=%d c2=%d c3=%d\n", c1, c2, c3);
#endif return ;
} /* 递归法:欧几里得算法,计算最大公约数 */
int gcd1(int m, int n)
{
#ifdef DEBUG
c1++;
#endif
return (m==)?n:gcd1(n%m, m);
} /* 迭代法(递推法):欧几里得算法,计算最大公约数 */
int gcd2(int m, int n)
{
while(m>)
{
#ifdef DEBUG
c2++;
#endif
int c = n % m;
n = m;
m = c;
}
return n;
} /* 连续整数试探算法,计算最大公约数 */
int gcd3(int m, int n)
{
if(m>n) {
int temp = m;
m = n;
n = temp;
}
int t = m;
while(m%t || n%t)
{
#ifdef DEBUG
c3++;
#endif
t--;
}
return t;
}

关键代码(正解):

/* 迭代法(递推法):欧几里得算法,计算最大公约数 */
int gcd(int m, int n)
{
while(m>0)
{
int c = n % m;
n = m;
m = c;
}
return n;
}

数论3——gcd&&lcm的更多相关文章

  1. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  2. 【HDU 5382】 GCD?LCM! (数论、积性函数)

    GCD?LCM! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  4. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  5. 洛谷 UVA11388 GCD LCM

    UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...

  6. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  7. [POJ 2429] GCD & LCM Inverse

    GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10621   Accepted: ...

  8. POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)

    [题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...

  9. UVA - 11388 GCD LCM

    II U C   ONLINE   C ON TEST  Problem D: GCD LCM Input: standard input Output: standard output The GC ...

随机推荐

  1. 動態SQL運用實例

    動態SQL運用實例 語法8.1.6之前: EXECUTE IMMEDIATE dynamic_sql_string [INTO {define_var1 [, define_var2] ... | p ...

  2. Oracle中的一些查询语句及其执行顺序

    查询条件: 1)LIKE:模糊查询,需要借助两个通配符,%:表示0到多个字符:_:标识单个字符. 2)IN(list):用来取出符合列表范围中的数据. 3)NOT IN(list): 取出不符合此列表 ...

  3. javascript 中数组的创建 添加 与将数组转换成字符串 页面三种提交请求的方式

    创建js数组 var array=new Array(); Java中创建数组 private String[] array=new String[3]; 两个完全不同的,js中是可变长度的 添加内容 ...

  4. 你不知道的javaScript笔记(5)

    原生函数 常用的原生函数 String() Number() Boolean() Array() Object() Function() RegExp() Date() Error() Symbol( ...

  5. 原生js的常见封装

    )); } ;;;;]){                 ];                 ] = ;;;,)     ,)     ,)     ,)         ,)         , ...

  6. chromium之ThreadLocalStorage

    看看头文件怎么用 // Wrapper for thread local storage. This class doesn't do much except provide // an API fo ...

  7. ABAP术语-Interface Parameter

    Interface Parameter 原文:http://www.cnblogs.com/qiangsheng/archive/2008/02/26/1081800.html Parameter t ...

  8. aix下oracle 12.1.0.2 asmca不能打开的故障

    因为要添加一个新的13T磁盘组,所以决定通过asmca处理. 结果输入asmca之后,没有反应,前后两天都是如此. 第三天,IBM的存储工程师已经把心的MPIO挂上,如果还无法操作,只能使用asmcm ...

  9. linux后台程序开发常用工具

    linux开发工具: 1.编辑工具:1)sourceInsight2)Notepad++3)UltraEdit4)Altova XMLSpy 2.linux服务器访问工具:1)FileZilla2)X ...

  10. Leecode刷题之旅-C语言/python-14.最长公共前缀

    /* * @lc app=leetcode.cn id=14 lang=c * * [14] 最长公共前缀 * * https://leetcode-cn.com/problems/longest-c ...