题意

题目链接

Sol

zz floyd。

很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值

可以证明最优路径的长度一定\(\leqslant N\)

然后一波\(n^4\) dp就完了

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
int f[51][51][1001];
int main() {
//memset(f, 0x3f, sizeof(f));
N = read(); M = read();
for(int k = 1; k <= N; k++)
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
f[i][j][k] = INF;
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), w = read();
f[x][y][1] = min(f[x][y][1], w);
}
for(int l = 2; l <= N; l++)// num of edge
for(int k = 1; k <= N; k++) // mid point
for(int i= 1; i <= N; i++) // start point
for(int j = 1; j <= N; j++) // end point
f[i][j][l] = min(f[i][j][l], f[i][k][l - 1] + f[k][j][1]);
int Q = read();
while(Q--) {
int x = read(), y = read();
double ans = 1e18;
for(int i = 1; i <= N; i++) if(f[x][y][i] != INF) ans = min(ans, (double) f[x][y][i] / i);
if(ans == 1e18) puts("OMG!");
else printf("%.3lf\n", ans);
}
return 0;
}
/*
*/

洛谷P1730 最小密度路径(floyd)的更多相关文章

  1. [洛谷P1730] 最小密度路径

    类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...

  2. 洛谷P1730最小密度路径

    题目传送门; 首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ...

  3. Luogu P1730 最小密度路径(最短路径+dp)

    P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) , ...

  4. 【洛谷P1730】最小密度路径

    题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. [Luogu 1730]最小密度路径

    Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). ...

  7. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  8. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  9. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

随机推荐

  1. Python第四次作业

    设计题1: 设计一个本月份日历,输出格式如下: 要求: 1.初始化start_day,end_day两个日期 from datetime import datetime start_day=datet ...

  2. 《Andrew Ng深度学习》笔记1

    深度学习概论 1.什么是神经网络? 2.用神经网络来监督学习 3.为什么神经网络会火起来? 1.什么是神经网络? 深度学习指的是训练神经网络.通俗的话,就是通过对数据的分析与计算发现自变量与因变量的映 ...

  3. mysql自动备份并上传至git仓库

      自动备份 备份需求 数据库备份的重要性再怎么强调也不为过.当你的操作出现差错,但又因为没有作备份导致数据无法还原时,你就能体会到“万念俱灰”的心情了. 数据库备份有多种形式,本文以我的个人网站数据 ...

  4. 关于 SimpleMembership 中 CreateDate 的问题

    使用 WebMatrix.WebData.WebSecurity.CreateUserAndAccount(model.UserName, model.Password,                ...

  5. JAVA之I/O 输入输出流详解

    简    介 如何在Java中进行文件的读写,Java IO流是必备的知识.这篇博文主要为您带来Java中的输入输出流的内容,包括文件编码.使用File类对文件和目录进行管理.字节流和字符流的基本操作 ...

  6. 002 android studio 常用设置

    1.改变字体 file--->setting --->font--->size 2.更改最小安卓版本 在project目录下,app下的build.gradle中修改 注意:buil ...

  7. Python web前端 04 盒子模型

    Python web前端 04 盒子模型 盒子模型是由内容(content).内边距(padding).外边距(margin).边框(border)组成的 一.边框 border #border 边框 ...

  8. [软件工程]团队介绍&学长采访

    项目 内容 这个作业属于哪个课程 2019春季计算机学院软件工程(罗杰) 这个作业的要求在哪里 第一次团队作业 - 采访! 我们在这个课程的目标是 团队开发,合作学习 1.团队介绍 岗位 人员& ...

  9. 洛谷 P1272 重建道路

    题目链接 题解 树形dp \(f_{i, j}\)表示以\(i\)为根的子树切出联通块大小为\(j\)的最小答案 显然\(f[i][1]\)为与\(i\)连的边数 设\(v\)是\(u\)的儿子 那么 ...

  10. Trailing Loves (or L'oeufs?)

    The number "zero" is called "love" (or "l'oeuf" to be precise, literal ...