P1502 窗口的星星

题目背景

小卡买到了一套新房子,他十分的高兴,在房间里转来转去。

题目描述

晚上,小卡从阳台望出去,“哇~~~~好多星星啊”,但他还没给其他房间设一个窗户,天真的小卡总是希望能够在晚上能看到最多最亮的星星,但是窗子的大小是固定的,边也必须和地面平行。这时小卡使用了超能力(透视术)知道了墙后面每个星星的位置和亮度,但是小卡发动超能力后就很疲劳,只好拜托你告诉他最多能够有总和多亮的星星能出现在窗口上。

输入输出格式

输入格式:

本题有多组数据,第一行为\(T\)表示有T组数据\(T \le 10\)

对于每组数据

第一行\(3\)个整数\(n\),\(W\),\(H\),\((n \le 10000,1 \le W,H \le 1000000)\) 表示有 \(n\) 颗星星,窗口宽为 \(W\),高为 \(H\)。

接下来\(n\)行,每行三个整数 \(x_i\),\(y_i\) ,\(l_i\) 表示星星的坐标在\((x_i,y_i)\),亮度为\(l_i\)。\((0 \le l_i,x_i,y_i<2^{31})\)

输出格式:

\(T\)个整数,表示每组数据中窗口星星亮度总和的最大值。

说明

小卡买的窗户框是金属做的,所以在边框上的不算在内。


说明的意思等价于把\(w--,h--\)然后做闭区间,不是\(-=2\)的原因是窗口可以不在整数点上

我们把矩形左上角视为矩形的位置,然后对每个星星,我们都有一个区域满足当矩形落在这个区域时,可以得到这个星星的亮度

也就是我们在所有星星的区域构成的集合中取一点得到最大的亮度之和

可以拿扫描线维护这个操作,要求维护区间加和全局最大值

因为是第一次写扫描线,所以犯了一个错误供大家借鉴借鉴

对扫描线多元组排序时,若\(x\)坐标相等时,先执行撤销操作(如果是对每个点先操作再询问的话)


Code:

#include <cstdio>
#include <algorithm>
#include <map>
#include <cstring>
using namespace std;
const int N=2e4+10;
map <int,int > dx,dy;
int px[N],py[N],shine[N],n,m,w,h,nx,ny;
struct node
{
int x,up,dow,shine;
bool friend operator <(node n1,node n2)
{
return n1.x==n2.x?n1.shine<n2.shine:n1.x<n2.x;
}
}line[N];
void init()
{
dx.clear(),dy.clear();
scanf("%d%d%d",&n,&w,&h);//个数、长、宽
--w,--h;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",px+i,py+i,shine+i);
dx[px[i]]=1,dy[py[i]]=1;
dx[px[i]-w]=1,dy[py[i]-h]=1;
}
nx=0,ny=0;
for(map <int,int >::iterator it=dx.begin();it!=dx.end();it++)
it->second=++nx;
for(map <int,int >::iterator it=dy.begin();it!=dy.end();it++)
it->second=++ny;
m=0;
for(int i=1;i<=n;i++)
{
line[++m]={dx[px[i]]+1,dy[py[i]-h],dy[py[i]],-shine[i]};
line[++m]={dx[px[i]-w],dy[py[i]-h],dy[py[i]],shine[i]};
}
sort(line+1,line+1+m);
}
int lazy[N<<2],mx[N<<2];
#define ls id<<1
#define rs id<<1|1
void pushdown(int id)
{
if(lazy[id])
{
lazy[ls]+=lazy[id],lazy[rs]+=lazy[id];
mx[ls]+=lazy[id],mx[rs]+=lazy[id];
lazy[id]=0;
}
}
void updata(int id)
{
mx[id]=max(mx[ls],mx[rs]);
}
void change(int id,int l,int r,int L,int R,int delta)
{
if(l==L&&r==R)
{
lazy[id]+=delta;
mx[id]+=delta;
return;
}
pushdown(id);
int Mid=L+R>>1;
if(r<=Mid) change(ls,l,r,L,Mid,delta);
else if(l>Mid) change(rs,l,r,Mid+1,R,delta);
else change(ls,l,Mid,L,Mid,delta),change(rs,Mid+1,r,Mid+1,R,delta);
updata(id);
}
void work()
{
memset(mx,0,sizeof(mx));
memset(lazy,0,sizeof(lazy));
int ans=0;
for(int i=1;i<=m;i++)
{
change(1,line[i].up,line[i].dow,1,ny,line[i].shine);
ans=max(ans,mx[1]);
}
printf("%d\n",ans);
}
int main()
{
int t;scanf("%d\n",&t);
while(t--)
init(),work();
return 0;
}

2018.8.31

洛谷 P1502 窗口的星星 解题报告的更多相关文章

  1. 洛谷p1502窗口的星星 扫描线

    题目链接:https://www.luogu.org/problem/P1502 扫描线的板子题,把每个点看成矩形,存下边(x,y,y+h-1,li)和(x+w-1,y,y+h-1),在按横坐标扫线段 ...

  2. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  3. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  4. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  5. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  6. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  7. 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告

    [USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...

  8. 洛谷 P1379 八数码难题 解题报告

    P1379 八数码难题 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初 ...

  9. NOIP2015 D2T3 洛谷2680 BZOJ4326 运输计划 解题报告

    前言:个人认为这是历年NOIP中比较简单的最后一题了,因此将自己的思路与大家分享. 题目大意: 给一棵无根树,给出m条路径.允许将树上的一条边的权值改为0.求m条路径长度最大值的最小值.n,m< ...

随机推荐

  1. scala成长之路(2)对象和类

    scala提供了一种特殊的定义单例的方法:object关键字 scala> object Shabi{ | val age = 0 | val name = "shabi" ...

  2. 如何导入XML数据 (python3.6.6区别于python2 环境)

    1.在python2中 代码如下图: 放在python3 环境下执行,将出现如下错误: 原因: python2中形如myTree.keys()[0]这样的写法是没有问题的,因为myTree.keys( ...

  3. 8.2 USB键盘驱动编写和测试

    目标:根据USB驱动分析和上节的USB鼠标驱动,编写键盘驱动,并测试. 一.原理分析 1. 首先通过打印usb_buf[i]中的8字节数据,看一下按键按下之后会接收到什么. 1)通过按完所有键盘按键打 ...

  4. java元注解(注解在注解上的注解)

    //ElementType.TYPE 给类.接口.枚举上使用 @Target(ElementType.TYPE)//给注解进行注解,表示该注解可以用在什么地方 //@Retention(Retenti ...

  5. Python3 使用基本循环实现多级目录(思路)

    一.多级目录设计: 1. 通过循环的方式显示菜单和进入菜单 2. 设置标志位以提供回退上一层菜单 2. 设置标志位以提供退出程序 二.注意要点: 1. 菜单样式,层次关系不要弄混乱 2. 当输入错误时 ...

  6. 剑指offer题目系列一

    本篇介绍<剑指offer>第二版中的四个题目:找出数组中重复的数字.二维数组中的查找.替换字符串中的空格.计算斐波那契数列第n项. 这些题目并非严格按照书中的顺序展示的,而是按自己学习的顺 ...

  7. OVERLAY(文字の上書き)

    OVERLAY 命令により.文字列が別の文字列によって上書きされます. OVERLAY c1 WITH c2 [ONLY str]. この命令により.項目 c1 のすべての位置のうち.str の中に出 ...

  8. 什么是 Cookie

    什么是 Cookie? Cookie 是一小段文本信息,伴随着用户请求和页面在 Web 服务器和浏览器之间传递.Cookie 包含每次用户访问站点时 Web 应用程序都可以读取的信息. 例如,如果在用 ...

  9. 【C#】 语法糖

    [C#] 语法糖 一, 扩展方法 1. 对某个类功能上的扩展 2. 特点: 使用方便,可以在不修改原代码的基础上进行扩展. 参照 linq,linq 就是一系列的扩展方法 3. 语法: 非泛型静态类, ...

  10. ubuntu 14.04安装nginx+php

    转自:http://www.cnblogs.com/helinfeng/p/4219051.html 基于最新的Ubuntu 14.04(2014年9月)搭建nginx.php.mysql环境,以下全 ...