题目链接

Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if  and , where k is some integer number in range[1, a].

By  we denote the quotient of integer division of x and y. By  we denote the remainder of integer division of x andy. You can read more about these operations here: http://goo.gl/AcsXhT.

The answer may be large, so please print its remainder modulo 1 000 000 007 (109 + 7). Can you compute it faster than Dreamoon?

Input

The single line of the input contains two integers ab (1 ≤ a, b ≤ 107).

Output

Print a single integer representing the answer modulo 1 000 000 007 (109 + 7).

题意 : 给你a,b。让你找出符合以下条件的x,div(x,b)/mod(x,b)=k,其中k所在范围是[1,a],其中mod(x,b)!= 0.然后将所有符合条件的x加和,求最后的结果

官方题解 :

If we fix the value of k, and let d = div(x, b), m = mod(x, b), we have :
d = mk
x = db + m
So we have x = mkb + m = (kb + 1) * m.
And we know m would be in range [0, b - 1] because it's a remainder, so the sum of x of that fixed k would be .
Next we should notice that if an integer x is nice it can only be nice for a single particular k because a given x uniquely definesdiv(x, b) and mod(x, b).
Thus the final answer would be sum up for all individual k which can be calculated in O(a) and will pass the time limit of 1.5 seconds.
Also the formula above can be expanded to .

#include <stdio.h>
#include <string.h>
#include <iostream> using namespace std ;
#define mod 1000000007 int main()
{
long long a,b ;
while(~scanf("%I64d %I64d",&a,&b)){
// printf("%I64d\n",a*(a+1)/2) ;
long long sum = (((a*(a+)/%mod)*b%mod+a)%mod*(b*(b-)/%mod))%mod ;
printf("%I64d\n",sum) ;
}
return ;
}

Codeforces Round #272 (Div. 1) A. Dreamoon and Sums(数论)的更多相关文章

  1. Codeforces Round #272 (Div. 2)-C. Dreamoon and Sums

    http://codeforces.com/contest/476/problem/C C. Dreamoon and Sums time limit per test 1.5 seconds mem ...

  2. Codeforces Round #272 (Div. 2)C. Dreamoon and Sums 数学推公式

    C. Dreamoon and Sums   Dreamoon loves summing up something for no reason. One day he obtains two int ...

  3. Codeforces Round #272 (Div. 2) C. Dreamoon and Sums 数学

    C. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input stand ...

  4. Codeforces Round #272 (Div. 2) C. Dreamoon and Sums (数学 思维)

    题目链接 这个题取模的时候挺坑的!!! 题意:div(x , b) / mod(x , b) = k( 1 <= k <= a).求x的和 分析: 我们知道mod(x % b)的取值范围为 ...

  5. Codeforces Round #272 (Div. 2) E. Dreamoon and Strings 动态规划

    E. Dreamoon and Strings 题目连接: http://www.codeforces.com/contest/476/problem/E Description Dreamoon h ...

  6. Codeforces Round #272 (Div. 2) D. Dreamoon and Sets 构造

    D. Dreamoon and Sets 题目连接: http://www.codeforces.com/contest/476/problem/D Description Dreamoon like ...

  7. Codeforces Round #272 (Div. 2) B. Dreamoon and WiFi dp

    B. Dreamoon and WiFi 题目连接: http://www.codeforces.com/contest/476/problem/B Description Dreamoon is s ...

  8. Codeforces Round #272 (Div. 2) A. Dreamoon and Stairs 水题

    A. Dreamoon and Stairs 题目连接: http://www.codeforces.com/contest/476/problem/A Description Dreamoon wa ...

  9. Codeforces Round #272 (Div. 2) E. Dreamoon and Strings dp

    题目链接: http://www.codeforces.com/contest/476/problem/E E. Dreamoon and Strings time limit per test 1 ...

随机推荐

  1. 对实体 "useSSL" 的引用必须以 ';' 分隔符结尾。

    <property name="connection.url">jdbc:mysql://127.0.0.1/cache?useUnicode=true&cha ...

  2. bzoj 4453 cys就是要拿英魂!——后缀数组+单调栈+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4453 询问离线,按R排序. 发现直接用 rk[ ] 的错误情况就是前面的某个位置 j 和自己 ...

  3. Python学习之变量的作用域

    学习地址:http://www.jianshu.com/p/17a9d8584530 1.变量作用域LEGB 1.1变量的作用域 在Python程序中创建.改变.查找变量名时,都是在一个保存变量名的空 ...

  4. What’s that ALUA exactly?

    What’s that ALUA exactly? 29 September, 20098 Comments Of course by now we have all read the excelle ...

  5. 融云rongCloud聊天室的使用

    融云提供了两种途径的接口, 一个是app端,一个是服务器端的. app端 1.连接融云,监听消息 rong = api.require('rongCloud2'); rong.init(functio ...

  6. Dynamics CRM 2011 FetchXml QueryExpression LINQ

    Dynamics CRM 2011支持三种查询语句 FetchXml QueryExpression LINQ 查询 功能 保存 FetchXml 支持QueryExpression的所有功能,额外支 ...

  7. GitHub in vs2010、vs2013

    GitHub在使用上大致和其他源代码管理工具一样,个人源代码管理和分享一大利器,而且vs2010和vs2013配置也没有任何区别,简单做了一下图文配置说明 一.注册github 1.github.co ...

  8. 安全测试回顾(一)补充:burp 的基本操作

    浏览器设置; 拦截请求: Spider 伪造请求: 对这个url 伪造请求 拦截一个页面后,进入攻击模块 sniper  两个参数值 保证一个不变  另一个 进行枚举 battering ram 两个 ...

  9. 什么是Ajax和JSON,它们的优缺点

    什么是Ajax??? 术语Ajax用来描述一组技术,它使浏览器可以为用户提供更为自然的浏览体验. Ajax它是“Asynchronous JavaScript + XML的简写” 定义Ajax: Aj ...

  10. requests的响应返回值显示content和text方法的区别

    requests的get或者post请求,返回的响应response获取方法:content和text content用于获取图片,返回二进制数据 text用于获取内容,返回的是unicode解码字符 ...