Superbull(最大生成树)(Kruskal)
Superbull
时间限制: 1 Sec 内存限制: 64 MB
提交: 49 解决: 13
[提交][状态][讨论版]
题目描述
and her friends are playing hoofball in the annual Superbull
championship, and Farmer John is in charge of making the tournament as
exciting as possible. A total of N (1 <= N <= 2000) teams are
playing in the Superbull. Each team is assigned a distinct integer team
ID in the range 1...2^30-1 to distinguish it from the other teams. The
Superbull is an elimination tournament -- after every game, Farmer John
chooses which team to eliminate from the Superbull, and the eliminated
team can no longer play in any more games. The Superbull ends when only
one team remains.
Farmer John notices a very unusual
property about the scores in matches! In any game, the combined score of
the two teams always ends up being the bitwise exclusive OR (XOR) of
the two team IDs. For example, if teams 12 and 20 were to play, then 24
points would be scored in that game, since 01100 XOR 10100 = 11000.
Farmer John believes that the more points
are scored in a game, the more exciting the game is. Because of this, he
wants to choose a series of games to be played such that the total
number of points scored in the Superbull is maximized. Please help
Farmer John organize the matches.
输入
输出
样例输入
4
3
6
9
10
样例输出
37
提示
OUTPUT DETAILS: One way to achieve 37 is as follows: FJ matches teams 3
and 9, and decides that 9 wins, so teams 6, 9, and 10 are left in the
tournament. He then matches teams 6 and 9, and lets team 6 win. Teams 6
and 10 are then left in the tournament. Finally, teams 6 and 10 face
off, and team 10 wins. The total number of points scored is (3 XOR 9) +
(6 XOR 9) + (6 XOR 10) = 10 + 15 + 12 = 37.
NOTE: The bitwise exclusive OR operation, commonly denoted by the ^
symbol, is a bitwise operation that performs the logical exclusive OR
operation on each position in two binary integers. The result in each
position is 1 if only the first bit is 1 or only the second bit is 1,
but is 0 if both bits are 0 or both are 1. For example: 10100 (decimal
20) XOR 01100 (decimal 12) = 11000 (decimal 24)
【分析】最大生成树,模板题
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include<functional>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int N=;
const int M=;
struct Edg {
int v,u;
ll w;
} edg[];
bool cmp(Edg g,Edg h) {
return g.w>h.w;
}
int n,m,maxn,cnt;
int parent[N];
int a[N];
void init() {
for(int i=; i<n; i++)parent[i]=i;
}
void Build() {
int u,v;
for(int i=; i<n; i++) {
scanf("%d",&a[i]);
}
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
edg[++cnt].u=i;
edg[cnt].v=j;
edg[cnt].w=a[i]^a[j];
}
}
sort(edg,edg+cnt+,cmp);
}
int Find(int x) {
if(parent[x] != x) parent[x] = Find(parent[x]);
return parent[x];
}
void Union(int x,int y) {
x = Find(x);
y = Find(y);
if(x == y) return;
parent[y] = x;
}
void Kruskal() {
ll sum=;
int num=;
int u,v;
for(int i=; i<=cnt; i++) {
u=edg[i].u;
v=edg[i].v;
if(Find(u)!=Find(v)) {
sum+=edg[i].w;
num++;
Union(u,v);
}
if(num>=n-) {
printf("%lld\n",sum);
break;
}
}
}
int main() {
scanf("%d",&n);
cnt=-;
init();
Build();
Kruskal();
return ;
}
Superbull(最大生成树)(Kruskal)的更多相关文章
- TZOJ 3710 修路问题(最小差值生成树kruskal或者LCT)
描述 xxx国“山头乡”有n个村子,政府准备修建乡村公路,由于地形复杂,有些乡村之间可能无法修筑公路,因此政府经过仔细的考察,终于得到了所有可能的修路费用数据.并将其公布于众,广泛征求村民的修路意见. ...
- 【BZOJ3943】[Usaco2015 Feb]SuperBull 最大生成树
[BZOJ3943][Usaco2015 Feb]SuperBull Description Bessie and her friends are playing hoofball in the an ...
- #图# #最大生成树# #kruskal# ----- OpenJudge 799:Heavy Transportation
OpenJudge 799:Heavy Transportation 总时间限制: 3000ms 内存限制: 65536kB 描述BackgroundHugo Heavy is happy. Afte ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- NOIP2017 考前汇总
时隔一年,相比去年一无所知的自己,学到了不少东西,虽然还是很弱,但也颇有收获[学会了打板QAQ] 现在是2017.11.9 21:10,NOIP2017的前两天晚上,明天就要出发,做最后的总结 N ...
- OI题目类型总结整理
## 本蒟蒻的小整理qwq--持续更新(咕咕咕) 数据结构 数据结构 知识点梳理 数据结构--线段树 推荐yyb dalao的总结--戳我 以后维护线段树还是把l,r写到struct里面吧,也别写le ...
- NOIP2013DAY1题解
T1转圈游戏 十月のsecret 题解:快速幂 代码: #include<iostream> #include<cstring> #include<cstdio> ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- [BZOJ1543] 生成树计数 (Kruskal)
Description 给定一个连通的带边权的图(允许自环和重边),求不同的最小生成树个数.两个生成树不同当它们所用的边的序号不同,换句话说,重边算多次. Input 第一行n,m,表示点数和边数(1 ...
随机推荐
- Android逆向之旅---爆破一款资讯类应用「最右」防抓包策略原理分析
一.逆向分析 首先感谢王同学提供的样本,因为王同学那天找到我咨询我说有一个应用Fiddler抓包失败,其实对于这类问题,我一般都会这么回答:第一你是否安装Fiddler证书了,他说他安装了.第二你是否 ...
- 安徽师大附中%你赛day4T1 金字塔 解题报告
金字塔 题目背景: \(Zdrcl\)带着妹子们来到了胡夫金字塔周边旅游, 发现这里正在进行一个有关金字塔的游戏 题目描述: 游戏规则如下: 1. 这里的金字塔是一个 \(N\) 阶的二维金字塔. 2 ...
- 【BZOJ 4500 矩阵】
Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 390 Solved: 217[Submit][Status][Discuss] Description ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- 【BZOJ 1901】Zju2112 Dynamic Rankings &&【COGS 257】动态排名系统 树状数组套线段树
外面是树状数组,里面是动态开点线段树,对于查询我们先把有关点找出来,然后一起在线段树上行走,这样就是单个O(log2)的了 #include <cstdio> #include <v ...
- angular js自定义service的简单示例
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- js和jquery修改背景颜色的区别
html: <HTML> <head> <meta http-equiv="content-type" content="text/html ...
- Lesson 3
1.关于面向对象的三个重要属性 Encapsulation(封装):无法直接访问类的成员变量,而是通过一些get set方法,间接访问数据域: Polymorphism(多态):静态绑定,动态绑定, ...
- Eclipse工具栏太多,自定义工具栏,去掉调试
Window --> Customize Perspective... --> Tool Bar Visibility 去掉勾选debug Tip:最新版本Customize Persp ...
- HDU2066一个人的旅行---(多起点多终点最短路径)
http://acm.hdu.edu.cn/showproblem.php?pid=2066 一个人的旅行 Time Limit: 1000/1000 MS (Java/Others) Memo ...