Superbull(最大生成树)(Kruskal)
Superbull
时间限制: 1 Sec 内存限制: 64 MB
提交: 49 解决: 13
[提交][状态][讨论版]
题目描述
and her friends are playing hoofball in the annual Superbull
championship, and Farmer John is in charge of making the tournament as
exciting as possible. A total of N (1 <= N <= 2000) teams are
playing in the Superbull. Each team is assigned a distinct integer team
ID in the range 1...2^30-1 to distinguish it from the other teams. The
Superbull is an elimination tournament -- after every game, Farmer John
chooses which team to eliminate from the Superbull, and the eliminated
team can no longer play in any more games. The Superbull ends when only
one team remains.
Farmer John notices a very unusual
property about the scores in matches! In any game, the combined score of
the two teams always ends up being the bitwise exclusive OR (XOR) of
the two team IDs. For example, if teams 12 and 20 were to play, then 24
points would be scored in that game, since 01100 XOR 10100 = 11000.
Farmer John believes that the more points
are scored in a game, the more exciting the game is. Because of this, he
wants to choose a series of games to be played such that the total
number of points scored in the Superbull is maximized. Please help
Farmer John organize the matches.
输入
输出
样例输入
4
3
6
9
10
样例输出
37
提示
OUTPUT DETAILS: One way to achieve 37 is as follows: FJ matches teams 3
and 9, and decides that 9 wins, so teams 6, 9, and 10 are left in the
tournament. He then matches teams 6 and 9, and lets team 6 win. Teams 6
and 10 are then left in the tournament. Finally, teams 6 and 10 face
off, and team 10 wins. The total number of points scored is (3 XOR 9) +
(6 XOR 9) + (6 XOR 10) = 10 + 15 + 12 = 37.
NOTE: The bitwise exclusive OR operation, commonly denoted by the ^
symbol, is a bitwise operation that performs the logical exclusive OR
operation on each position in two binary integers. The result in each
position is 1 if only the first bit is 1 or only the second bit is 1,
but is 0 if both bits are 0 or both are 1. For example: 10100 (decimal
20) XOR 01100 (decimal 12) = 11000 (decimal 24)
【分析】最大生成树,模板题
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include<functional>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int N=;
const int M=;
struct Edg {
int v,u;
ll w;
} edg[];
bool cmp(Edg g,Edg h) {
return g.w>h.w;
}
int n,m,maxn,cnt;
int parent[N];
int a[N];
void init() {
for(int i=; i<n; i++)parent[i]=i;
}
void Build() {
int u,v;
for(int i=; i<n; i++) {
scanf("%d",&a[i]);
}
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
edg[++cnt].u=i;
edg[cnt].v=j;
edg[cnt].w=a[i]^a[j];
}
}
sort(edg,edg+cnt+,cmp);
}
int Find(int x) {
if(parent[x] != x) parent[x] = Find(parent[x]);
return parent[x];
}
void Union(int x,int y) {
x = Find(x);
y = Find(y);
if(x == y) return;
parent[y] = x;
}
void Kruskal() {
ll sum=;
int num=;
int u,v;
for(int i=; i<=cnt; i++) {
u=edg[i].u;
v=edg[i].v;
if(Find(u)!=Find(v)) {
sum+=edg[i].w;
num++;
Union(u,v);
}
if(num>=n-) {
printf("%lld\n",sum);
break;
}
}
}
int main() {
scanf("%d",&n);
cnt=-;
init();
Build();
Kruskal();
return ;
}
Superbull(最大生成树)(Kruskal)的更多相关文章
- TZOJ 3710 修路问题(最小差值生成树kruskal或者LCT)
描述 xxx国“山头乡”有n个村子,政府准备修建乡村公路,由于地形复杂,有些乡村之间可能无法修筑公路,因此政府经过仔细的考察,终于得到了所有可能的修路费用数据.并将其公布于众,广泛征求村民的修路意见. ...
- 【BZOJ3943】[Usaco2015 Feb]SuperBull 最大生成树
[BZOJ3943][Usaco2015 Feb]SuperBull Description Bessie and her friends are playing hoofball in the an ...
- #图# #最大生成树# #kruskal# ----- OpenJudge 799:Heavy Transportation
OpenJudge 799:Heavy Transportation 总时间限制: 3000ms 内存限制: 65536kB 描述BackgroundHugo Heavy is happy. Afte ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- NOIP2017 考前汇总
时隔一年,相比去年一无所知的自己,学到了不少东西,虽然还是很弱,但也颇有收获[学会了打板QAQ] 现在是2017.11.9 21:10,NOIP2017的前两天晚上,明天就要出发,做最后的总结 N ...
- OI题目类型总结整理
## 本蒟蒻的小整理qwq--持续更新(咕咕咕) 数据结构 数据结构 知识点梳理 数据结构--线段树 推荐yyb dalao的总结--戳我 以后维护线段树还是把l,r写到struct里面吧,也别写le ...
- NOIP2013DAY1题解
T1转圈游戏 十月のsecret 题解:快速幂 代码: #include<iostream> #include<cstring> #include<cstdio> ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- [BZOJ1543] 生成树计数 (Kruskal)
Description 给定一个连通的带边权的图(允许自环和重边),求不同的最小生成树个数.两个生成树不同当它们所用的边的序号不同,换句话说,重边算多次. Input 第一行n,m,表示点数和边数(1 ...
随机推荐
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- mysql删除id最小的条目
DELETE FROM 表1 WHERE Mid in (select Mid from (SELECT Min(Mid) Mid FROM 表1 c1) t1);
- c++ STL(2)
Vector: #include "stdafx.h" #include<iostream> #include<vector> #include<al ...
- SpringMVC学习 -- @RequestParam , @RequestHeader , @CookieValue 的使用
使用 @RequestParam 绑定请求参数值: value:参数名 , 仅有一个 value 属性时 , value 可以省略不写. required:是否必须.默认为 true , 表示请求参数 ...
- ES6学习笔记(二)——数组的扩展
扩展运算符 ... 将数组转化成用逗号分隔的参数序列 * 扩展运算符背后调用的是遍历器接口(Symbol.iterator),如果一个对象没有部署这个接口,就无法转换. 应用 1. 合并数组 2. 将 ...
- Linux动态库生成以及调用
Linux下动态库文件的文件名形如 libxxx.so,其中so是 Shared Object 的缩写,即可以共享的目标文件. 在链接动态库生成可执行文件时,并不会把动态库的代码复制到执行文件中,而是 ...
- [洛谷P3501] [POI2010]ANT-Antisymmetry
洛谷题目链接:[POI2010]ANT-Antisymmetry 题目描述 Byteasar studies certain strings of zeroes and ones. Let be su ...
- Python基础(7)闭包函数、装饰器
一.闭包函数 闭包函数:1.函数内部定义函数,成为内部函数, 2.改内部函数包含对外部作用域,而不是对全局作用域名字的引用 那么该内部函数成为闭包函数 #最简单的无参闭包函数 def func1() ...
- bzoj 5028: 小Z的加油店——带修改的区间gcd
Description 小Z经营一家加油店.小Z加油的方式非常奇怪.他有一排瓶子,每个瓶子有一个容量vi.每次别人来加油,他会让 别人选连续一段的瓶子.他可以用这些瓶子装汽油,但他只有三种操作: 1. ...
- [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...