P1586 四方定理

题目描述

四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32和25=5^{2}25=52。给定的正整数nn,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32和25=3^{2}+4^{2}25=32+42视为一种方案。

输入输出格式

输入格式:

第一行为正整数tt(t\le 100t≤100),接下来tt行,每行一个正整数nn(n\le 32768n≤32768)。

输出格式:

对于每个正整数nn,输出方案总数。

输入输出样例

输入样例#1: 复制

1
2003
输出样例#1: 复制

48

枚举

当前数最多由4个四方数组成,那么我们可以枚举这4个数,然后循环枚举,我们可以直接处理到最大的数,这样就可以不用处理t次了

然后我们再在美剧里面加一点剪枝就好了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define n 182
#define N 40000
using namespace std;
int m,t,a[n],ans[N],f[n],maxn;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    t=read();
    ;i<=t;i++)
     a[i]=read(),maxn=max(maxn,a[i]);
    ;i<=n;i++)
     f[i]=i*i;
    ;i<=n;i++)
    {
        if(f[i]>maxn) break;
        for(int j=i;j<=n;j++)
        {
            if(f[i]+f[j]>maxn) break;
            for(int x=j;x<=n;x++)
            {
                if(f[i]+f[j]+f[x]>maxn) break;
                for(int y=x;y<=n;y++)
                 if(f[i]+f[j]+f[x]+f[y]>maxn) break;
                 else ans[f[i]+f[j]+f[x]+f[y]]++;
            }
        }
    }
    ;i<=t;i++)
     printf("%d\n",ans[a[i]]);
    ;
}

洛谷——P1586 四方定理的更多相关文章

  1. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  2. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  3. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 洛谷 P3834 卢卡斯定理 题解

    题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...

  6. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  7. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  8. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

随机推荐

  1. HDU 6194 string string string(后缀数组+RMQ)

    string string string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. [Leetcode] Anagrams 颠倒字母构成词

    Given an array of strings, return all groups of strings that are anagrams. Note: All inputs will be ...

  3. CMD批处理把txt文本中的每行写入一个新文件,第一列作文件名

    需求 现在有一个文件格式如图 ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17001 89.84 8.87 1.29 -0.0 0.0 68.99 0.0 0. ...

  4. 【NOIP模拟赛】与非 乱搞

    biubiu~~~ 正解是线段树维护真值表,但是我觉得对于这道题来说乱搞就够了....... 我们发现如果我们把每一个数都一开始取反就会发现对于最后结果来说 x=x^1,x nand x=x|x ,x ...

  5. [POI2008] Poc (原名 Trians) Treap+Hash

    这个题和千山鸟飞绝体现出了一种用平衡树解决动态集合问题,主要套路就是蜜汁标记. 这个题我一开始用替罪羊树搞了一下对了28个点,后来我换成了Treap一搞对了14个点,再后来发现被卡了Hash我竟然在自 ...

  6. 使用setTimeout延时10ms执行onunloadcancel

    在做Web开发时,我们经常用到页面关闭事件onbeforeunload,可以给用户一个选择放弃关闭的机会,就比如这个博客编辑器.如果用户选择了离开,那么onunload事件自然会触发:但若用户选择了取 ...

  7. size用法小记

    By francis_hao    Feb 14,2017 列出二进制文件各个段的大小和总大小 概述 选项解释 -A -B --format=compatibility 选择显示的格式, -A = - ...

  8. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  9. 定时导出用户数据(expdp,impdp)

    一 定时导出数据: #!/bin/bash############################################################################### ...

  10. Windows Time Client

    Timezone: UTC Coordinated Universal Time ====Perform by Local / administrator must,configure Time se ...