$\sum\limits_{i=1}^n [k | i] \times C_n^i$

膜 $998244353$

$n \leq 10^{15},k \leq 2^{20}$

$k$ 是 $2$ 的正整数次方

sol:

“不看题解拿头做” 系列

考虑构造一个序列 $a_i$ 满足只有 $[k|i]$ 时是 $1$,其它时候是 $0$

之后就开始神仙了起来

构造 $k$ 次单位根 $\omega _k = g^{\frac{p-1}{k}}$,发现 $\frac{1}{k} \times \sum\limits_{j=0}^{k-1} \omega _k^{i \times j} = [k | i]$

代入原式得到 $\sum\limits_{i=1}^n \frac{1}{k} \times \sum\limits_{j=0}^{k-1} \omega _k^{i \times j} \times C_n^i$

根据二项式定理 $\sum\limits_{i=0}^n C_n^i \times x^i = (x+1)^n$,可以化简

$\frac{1}{k} \times \sum\limits_{j=0}^{k-1} (\omega_k ^j + 1)^n$

这就可以直接求了

#include <bits/stdc++.h>
#define LL long long
using namespace std;
#define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i)
#define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i)
inline LL read() {
LL x = , f = ; char ch = getchar();
for (; !isdigit(ch); ch = getchar())if (ch == '-')f = -f;
for (; isdigit(ch); ch = getchar()) x = * x + ch - '';
return x * f;
}
const int mod = ;
inline int ksm(int x, int t) {
int res = ;
for(; t; x = 1LL * x * x % mod, t = t >> ) if(t & ) res = 1LL * x * res % mod;
return res;
}
int main() {
LL n = read() % (mod-), k = read();
int ans = ;
int wn = ksm(, (mod-) / k), w = ksm(, (mod-) / k);
rep(i, , k-) {
(ans += ksm(w + , n)) %= mod;
w = 1LL * w * wn % mod;
}
ans = 1LL * ans * ksm(k, mod - ) % mod;
cout << ans << endl;
}

loj #6247. 九个太阳的更多相关文章

  1. loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理

    LINK:九个太阳 不可做系列. 构造比较神仙. 考虑FFT的求和原理有 \(\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^n=[k|n]\) 带入这道题的式子. 有\(\su ...

  2. [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树

    [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...

  3. [LOJ #2473] [九省联考2018] 秘密袭击coat

    题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...

  4. [LOJ] 分块九题 4

    https://loj.ac/problem/6280 区间修改,区间求和. 本来线段树的活. //Stay foolish,stay hungry,stay young,stay simple #i ...

  5. [LOJ] 分块九题 3

    https://loj.ac/problem/6279 区间修改,区间查询前驱. TLE无数,我觉得这代码最精髓的就是block=1000. 谜一样的1000. 两个启示: 块内可以维护数据结构,比如 ...

  6. [LOJ] 分块九题 2

    https://loj.ac/problem/6278 区间修改,查询区间第k大. 块内有序(另存),块内二分. 还是用vector吧,数组拷贝排序,下标搞不来.. //Stay foolish,st ...

  7. [LOJ] 分块九题 1

    https://loj.ac/problem/6277 区间修改,单点查询. //Stay foolish,stay hungry,stay young,stay simple #include< ...

  8. [LOJ] 分块九题 8

    区间查询数值+整体赋值 维护tag代表整个区间被赋成了tag[i] 用pushdown操作,而不是修改了再check. 不压缩代码了,调起来心累,长点有啥不好. //Stay foolish,stay ...

  9. [LOJ] 分块九题 7

    区间加法,区间乘法,单点查询. 洛谷线段树2 屡清加法乘法的关系,定义答案为 a*mut+add 对于整块: 新的乘w,mut和add都要乘w 新的加w,add加w //Stay foolish,st ...

随机推荐

  1. staticmethod

    python staticmethod 返回函数的静态方法. 该方法不强制要求传递参数,如下声明一个静态方法: class C(object): @staticmethod def f(arg1, a ...

  2. JavaScript:学习笔记(1)——在HTML中使用JS

    在HTML中使用JavaScript <script>元素 1.直接在网页中嵌入JS代码 说明: 请不要在代码的任何地方出现</script>字符串 这是由于解析嵌入式代码的规 ...

  3. iOS git 托管代码 常用几个操作

    学习 git 切换分支 1  从远程下载一个分支develop(本地没有的) (1) git fetch origin develop (2) git checkout develop (默认 分支切 ...

  4. Spring_HelloWord

    环境:IntelliJ 14 : jdk1.8   Spring操作步骤 1.新建项目---Spring Batch 2.IntelliJ会自动加载jar包 3.现在就可以在src目录下写Java类文 ...

  5. Springboot WebSocket例子

    Springboot整合WebSocket 1.application.properties #设置服务端口号 server.port=8080 #thymeleaf配置 #是否启用模板缓存. spr ...

  6. 建议13:使用Python模块re实现解析小工具

    # -*- coding:utf-8 -*- # ''' Python re 的主要功能: re.compile(pattern[, flags]) 把正则表达式的模式和标识转化成正则表达式对象,供 ...

  7. window7 3G/4G拨号操作

    Win7系统Modem拨号操作指导:https://wenku.baidu.com/view/bb855b1dc77da26925c5b0e1.html 拨号上网设置APN,拨号号码,帐号和密码:ht ...

  8. AWK的行循环控制

    1.控制函数:next,getline,exit. next:      该行的action运行到next就停止,读取下一行. getline:1.没有"<"或“|”的情况下 ...

  9. new Date(dateString)

    xxxx-xx-xx xx:xx:xx chrome firefox opera xxxx/xx/xx xx:xx:xx chrome firefox opera safari ios(苹果手机只认此 ...

  10. nodejs文件追加内容

    const fs = require("fs"); // fs.appendFile 追加文件内容 // 1, 参数1:表示要向那个文件追加内容,只一个文件的路径 // 2, 参数 ...