bzoj 4299 Codechef FRBSUM
定义一个集合的神秘数为不能表示成这个集合的某个子集和的最小正整数,给一个数列,多次求区间神秘数
$n \leq 100000$
sol:
考虑这个神秘数的性质,可以发现,如果神秘数是 $x$,那么 $1 \sim x$ 的所有数都能凑出来
如果每次往集合中加入一个数,如果比 $x$ 大,则神秘数不变,如果比 $x$ 小,则神秘数至少 $+x$
于是每次可以用值域主席树维护一下区间小于等于 $x$ 的所有数的和,然后对于每个区间,先把神秘数 $x$ 设为 $0$,每轮求小于等于 $x+1$ 的所有数的和,如果和就是 $x$,则 $x+1$ 是神秘数,否则继续求
可以证明这样轮次很少
#include <bits/stdc++.h>
#define LL long long
#define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i)
#define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i)
using namespace std;
inline int read() {
int x = , f = ; char ch;
for (ch = getchar(); !isdigit(ch); ch = getchar()) if (ch == '-') f = -f;
for (; isdigit(ch); ch = getchar()) x = * x + ch - '';
return x * f;
}
const int maxn = , MX = 1e9;
int n, q, a[maxn];
int root[maxn], ls[maxn << ], rs[maxn << ], val[maxn << ], ToT;
void Insert(int &x, int pre, int l, int r, int pos) {
x = ++ToT; val[x] = val[pre] + pos;
if(l == r) return; int mid = (l + r) >> ;
ls[x] = ls[pre]; rs[x] = rs[pre];
if(pos <= mid) Insert(ls[x], ls[pre], l, mid, pos);
else Insert(rs[x], rs[pre], mid+, r, pos);
}
int query(int x, int pre, int l, int r, int pos) {
if(l == r) return val[x] - val[pre];
int mid = (l + r) >> ;
if(pos <= mid) return query(ls[x], ls[pre], l, mid, pos);
else return val[ls[x]] - val[ls[pre]] + query(rs[x], rs[pre], mid+, r, pos);
}
int main() {
n = read();
rep(i, , n) a[i] = read(), Insert(root[i], root[i - ], , MX, a[i]);
for(q = read(); q; q--) {
int l = read(), r = read(); int lst = , mx = ;
while() {
mx = query(root[r], root[l - ], , MX, mx + );
if(lst == mx) break; lst = mx;
//cout << mx << " " << lst << endl;
}
printf("%d\n", lst + );
}
}
bzoj 4299 Codechef FRBSUM的更多相关文章
- BZOJ.4299.Codechef FRBSUM(主席树)
题目链接 记mx为最大的满足1~mx都能组成的数. 考虑当前能构成1~v中的所有数,再加入一个数x,若x>v+1,则mx=v,x不会产生影响:否则x<=v+1,则新的mx=x+v. 对于区 ...
- 4299: Codechef FRBSUM
4299: Codechef FRBSUM https://www.lydsy.com/JudgeOnline/problem.php?id=4299 分析: 主席树. https://blog.se ...
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- 【Codechef FRBSUM】【FJOI2016】【BZOJ4299】【BZOJ 4408】 可持久化线段树
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 475 Solved: 287[Submit][Status ...
- bzoj 4546: codechef XRQRS [可持久化Trie]
4546: codechef XRQRS 可持久化Trie codechef上过了,bzoj上蜜汁re,看别人说要开5.2e5才行. #include <iostream> #includ ...
- BZOJ 3221: [Codechef FEB13] Obserbing the tree树上询问( 可持久化线段树 + 树链剖分 )
树链剖分+可持久化线段树....这个一眼可以看出来, 因为可持久化所以写了标记永久化(否则就是区间修改的线段树的持久化..不会), 结果就写挂了, T得飞起...和管理员拿数据调后才发现= = 做法: ...
- BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )
从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...
- BZOJ 4260: Codechef REBXOR( trie )
求出前缀和, 那么以第x个元素结尾的最大异或值是max(sumx^sump)(1≤p<x), 用trie加速. 后缀同理, 然后扫一遍就OK了.时间复杂度O(31N) ------------- ...
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
随机推荐
- mysql只能连接localhost解决
grant all privileges on *.* to 'root'@'%' identified by 'root';flush privileges;
- 【整理学习Hadoop】H D F S 一个分布式文件系统
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时,它和其他的分布式文件系统的区别 ...
- 深度学习2--安装opencv3.1
1\opencv的安装参考视频 2\ 以下内容来自:http://blog.csdn.net/l18930738887/article/details/54696148 本人因为被坑过,所以建议各位最 ...
- 流量分析系统---kafka集群部署
1.集群部署的基本流程 Storm上游数据源之Kakfa 下载安装包.解压安装包.修改配置文件.分发安装包.启动集群 2.基础环境准备 安装前的准备工作(zk集群已经部署完毕) 关闭防火墙 chk ...
- Cookie用法简介
java操作Cookie---javax.servlet.http.Cookie 1.增加一个Cookie Cookie cookie = new Cookie("username" ...
- Python学习进程(13)文件与IO
本节介绍基本的IO函数和文件的读写操作. (1)读取键盘输入: Python用于读取键盘输入的函数有两个:raw_input与input. 1)raw_input函数 从标准输入读取一 ...
- 每日练习level-7
1.有序列表.无序列表.自定义列表如何使用?写个简单的例子.三者在语义上有什么区别?使用场景是什么? 能否嵌套? 有序列表是一列使用数字进行标记的项目,它使用<li>包含于<ol&g ...
- Python编程-架构、Socket
一.客户端/服务器架构 1.C/S架构 Client/Server架构,即服务器/客户端架构. 客户端和服务器端的程序不同,用户的程序主要在客户端,服务器端主要提供数据管理.数据共享.数据及系统维护和 ...
- ubuntu下make无法安装的问题
发布时间:2015-10-30 10:51:30来源:linux网站作者:_莫欺少年穷 在帮同学服务器安装环境过程中,发现,make 命令不能使用,提示: The program 'make' is ...
- 深入理解JVM1
1 Java技术与Java虚拟机 说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成: Java编程语言.Java类文件格式.Java虚拟机和Java应用程 ...