个人心得:今天就做了这些区间DP,这一题开始想用最长子序列那些套路的,后面发现不满足无后效性的问题,即(,)的配对

对结果有一定的影响,后面想着就用上一题的思想就慢慢的从小一步一步递增,后面想着越来越大时很多重复,应该要进行分割,

后面想想又不对,就去看题解了,没想到就是分割,还是动手能力太差,还有思维不够。

 for(int j=;j+i<ch.size();j++)
{
if(check(j,j+i))
dp[j][j+i]=dp[j+][j+i-]+;
for(int m=j;m<=j+i;m++)
dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+][j+i]);
}

分割并一次求最大值。动态规划真的是一脸懵逼样,多思考,多瞎想吧,呼~

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iomanip>
#include<string>
#include<algorithm>
using namespace std;
int money[];
int dp[][];
string ch;
const int inf=;
int check(int i,int j){
if((ch[i]=='('&&ch[j]==')')||(ch[i]=='['&&ch[j]==']'))
return ;
return ;
}
void init(){
for(int i=;i<ch.size();i++)
for(int j=;j<ch.size();j++)
dp[i][j]=;
}
int main(){
int n,m;
while(getline(cin,ch,'\n')){
if(ch=="end") break;
init();
for(int k=;k<ch.size()-;k++)
if(check(k,k+))
dp[k][k+]=;
else
dp[k][k+]=;
for(int i=;i<ch.size();i++)
{
for(int j=;j+i<ch.size();j++)
{
if(check(j,j+i))
dp[j][j+i]=dp[j+][j+i-]+;
for(int m=j;m<=j+i;m++)
dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+][j+i]);
} }
cout<<dp[][ch.size()-]<<endl;
}
return ;
}
												

Brackets (区间DP)的更多相关文章

  1. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  2. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  3. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  4. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  5. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  6. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  7. Code Forces 149DColoring Brackets(区间DP)

     Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  9. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  10. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. OJ 1101 谁是中间的那个

    前言:主要考察排序用法 sort(cow+1,cow+1+n,cmp);//数组按cmp方法排序 Description 一天,农夫乔伊像往常一样来到了他的牧场,他突然对他的奶牛产奶量产生了兴趣.他想 ...

  2. 016_笼统概述MapReduce执行流程结合wordcount程序

    数据传输<key,value>     File-->  <key,value>  -->map(key,value)  --> mapResult<k ...

  3. 建议10:numpy使用基础

    # -*- coding: utf-8 -*- import numpy as np #---------------------------------------- #-- 定义 ndarray ...

  4. Centos系统 上下文切换的检查思路

    1.什么是上下文切换(Context Switch)? 上下文切换,有时也称做进程切换或任务切换,是指CPU从一个进程或线程切换到另一个进程或线程. 操作系统可以同时运行多个进程, 然而一颗CPU同时 ...

  5. Kubernetes Rook

    Rook Rook 是一个开源的cloud-native storage编排, 提供平台和框架:为各种存储解决方案提供平台.框架和支持,以便与云原生环境本地集成. Rook 将存储软件转变为自我管理. ...

  6. kubernetes 核心对象

    Pods Pod是Kubernetes的基本操作单元,也是应用运行的载体.整个Kubernetes系统都是围绕着Pod展开的,比如如何部署运行Pod.如何保证Pod的数量.如何访问Pod等.另外,Po ...

  7. Exception in thread "main" java.util.concurrent.ExecutionException: org.apache.kafka.common.errors.TimeoutException: Expiring 1 record(s) for topic_test_1219-2: 30010 ms has passed since batch creatio

    代码如下 public static void producer1() throws ExecutionException, InterruptedException { Properties pro ...

  8. HDU 汉诺塔系列

    做了这一系列题,表示对汉诺塔与这一系列递推理解加深了 经典汉诺塔:1,2,...,n表示n个盘子,数字大盘子就大,n个盘子放在第1根柱子上,按照从上到下 从小到大的顺序排放,过程中每次大盘都不能放在小 ...

  9. Linux嵌入式 -- 内核 - proc文件系统

    1. 什么是proc文件系统? 实例:通过 /proc/meminfo,查询当前内存使用情况. 结论:proc文件系统是一种在用户态检查内核状态的机制. 2.Proc文件分类 特点  每个文件都规定了 ...

  10. UOJ132 【NOI2015】小园丁与老司机

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...