Brackets (区间DP)
个人心得:今天就做了这些区间DP,这一题开始想用最长子序列那些套路的,后面发现不满足无后效性的问题,即(,)的配对
对结果有一定的影响,后面想着就用上一题的思想就慢慢的从小一步一步递增,后面想着越来越大时很多重复,应该要进行分割,
后面想想又不对,就去看题解了,没想到就是分割,还是动手能力太差,还有思维不够。
for(int j=;j+i<ch.size();j++)
{
if(check(j,j+i))
dp[j][j+i]=dp[j+][j+i-]+;
for(int m=j;m<=j+i;m++)
dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+][j+i]);
}
分割并一次求最大值。动态规划真的是一脸懵逼样,多思考,多瞎想吧,呼~
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iomanip>
#include<string>
#include<algorithm>
using namespace std;
int money[];
int dp[][];
string ch;
const int inf=;
int check(int i,int j){
if((ch[i]=='('&&ch[j]==')')||(ch[i]=='['&&ch[j]==']'))
return ;
return ;
}
void init(){
for(int i=;i<ch.size();i++)
for(int j=;j<ch.size();j++)
dp[i][j]=;
}
int main(){
int n,m;
while(getline(cin,ch,'\n')){
if(ch=="end") break;
init();
for(int k=;k<ch.size()-;k++)
if(check(k,k+))
dp[k][k+]=;
else
dp[k][k+]=;
for(int i=;i<ch.size();i++)
{
for(int j=;j+i<ch.size();j++)
{
if(check(j,j+i))
dp[j][j+i]=dp[j+][j+i-]+;
for(int m=j;m<=j+i;m++)
dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+][j+i]);
} }
cout<<dp[][ch.size()-]<<endl;
}
return ;
}
Brackets (区间DP)的更多相关文章
- Codeforces 508E Arthur and Brackets 区间dp
Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...
- POJ 2995 Brackets 区间DP
POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3624 Accepted: 1879 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- HOJ 1936&POJ 2955 Brackets(区间DP)
Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...
- Code Forces 149DColoring Brackets(区间DP)
Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj 2955 Brackets (区间dp基础题)
We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
随机推荐
- UI控件之UICollectionView
UICollectionView:集合视图,是iOS6.0后出现的,与UITableView类似,优势在于可以灵活的布局cell UICollectionViewLayout:布局类,抽象类,一般定义 ...
- 【leetcode刷题笔记】Number of 1 Bits
Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also know ...
- P4121 [WC2005]双面棋盘
题目 P4121 [WC2005]双面棋盘 貌似是刘汝佳出的题目?? 做法 线段树维护并查集 线段树分治\(1\)~\(n\)行,我们要考虑维护的肯定是黑.白各自的联通块数量 考虑区间合并,其实就与中 ...
- Hearbeat 介绍
Hearbeat 介绍 Linux-HA的全称是High-Availability Linux,它是一个开源项目,这个开源项目的目标是:通过社区开发者的共同努力,提供一个增强linux可靠性(reli ...
- R中的运算符,条件语句,控制语句
1.运算符 算术运算符:+,-,*,/ 关系运算符:==,!=,>,>=,<,<= 逻辑运算符:&,|,&&,||,! &和|称为短逻辑符,&a ...
- golang注册码
许可证服务认证 由于更新,最近注册码都不能用了,下面是能用的, http://idea.youbbs.org
- MYSQL数据库字段命名及设计规范
1.设计原则 1) 标准化和规范化数据的标准化有助于消除数据库中的数据冗余.标准化有好几种形式,但 Third Normal Form(3NF)通常被认为在性能.扩展性和数据完整性方面达到了最好平衡. ...
- Servlet和Filter的url匹配以及url-pattern详解
Servlet和filter是J2EE开发中常用的技术,使用方便,配置简单,老少皆宜.估计大多数朋友都是直接配置用,也没有关心过具体的细节,今天遇到一个问题,上网查了servlet的规范才发现,ser ...
- json数据的拼接与解析
json数据格式 [{ "firstName": "Brett", "lastName":"McLaughlin", & ...
- scapy学习笔记(2)
一.包 包(Packet)是TCP/IP协议通信传输中的数据单位,一般也称“数据包”.其主要由“目的IP地址”.“源IP地址”.“净载数据”等部分构成,包括包头和包体,包头是固定长度,包体的长度不定, ...