Python迭代器生成器,私有变量及列表字典集合推导式(二)
1 python自省机制
这个是python一大特性,自省就是面向对象的语言所写的程序在运行时,能知道对象的类型,换句话说就是在运行时能获取对象的类型,比如通过 type(),dir(),getattr(),hasattr(),isinstance().
a = [1,2,3]
b = {'a':1,'b':2,'c':3}
c = True
print(type(a),type(b),type(c)) # <type 'list'> <type 'dict'> <type 'bool'>
print(isinstance(a,list)) # True
2 python中列表推导式,字典推导式,集合推导式
列表生成式 : 中括号括起来表示列表
(1)[exp for iter_var in iterable if_exp]
#工作过程:
1 迭代iterable中的每个元素,每次迭代都先判断if_exp表达式结果为真,如果为真则进行下一步,如果为假则进行下一次迭代;
2 把迭代结果赋值给iter_var,然后通过exp得到一个新的计算值;
3 最后把所有通过exp得到的计算值以一个新列表的形式返回。
#相当于这样的过程:
L = []
for iter_var in iterable:
if_exp:
L.append(exp)
#也可以循环嵌套
(2)[exp for iter_var_A in iterable_A for iter_var_B in iterable_B]
工作过程:
每迭代iterable_A中的一个元素,就把ierable_B中的所有元素都迭代一遍。
#相当于这样的过程:
L = []
for iter_var_A in iterable_A:
for iter_var_B in iterable_B:
L.append(exp)
字典推导式:大括号括起来,表示为字典
d = {key: value for (key, value) in iterable}
#快速更改字典key,value
mcase = {'a': 10, 'b': 34}
mcase_frequency = {v: k for k, v in mcase.items()}
print(mcase_frequency)
# Output: {10: 'a', 34: 'b'}
集合推导式: 跟列表推导式也是类似的 唯一的区别在于它使用大括号{},表示结果为集合
squared = {x**2 for x in [1, 1, 2]}
print(squared)
# Output: set([1, 4])
3 Python中单下划线和双下划线
>>> class MyClass():
... def __init__(self):
... self.__superprivate = "Hello"
... self._semiprivate = ", world!"
...
>>> mc = MyClass()
>>> print(mc.__superprivate) #私有变量不能直接访问
#print(mc._Myclass__superprivate) 也可以访问,但是不建议这样访问
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: myClass instance has no attribute '__superprivate'
>>> print(mc._semiprivate)
, world!
>>> print(mc.__dict__)
{'_MyClass__superprivate': 'Hello', '_semiprivate': ', world!'}
__foo__: 一种约定,Python内部的名字,用来区别其他用户自定义的命名,以防冲突,就是例如__init__(),__del__(),__call__()这些特殊方法_foo: 一种约定,用来指定变量私有.程序员用来指定私有变量的一种方式.不能用from module import * 导入,其他方面和公有一样访问;__foo: 意义: 私有变量不能直接访问, 因为解析器用_classname__foo来代替这个名字,以区别和其他类相同的命名,它无法直接像公有成员一样随便访问,但是可以通过对象名._类名__xxx这样的方式可以访问,但是不建议这样来访问.
4 字符串格式化:%和.format
.format在许多方面看起来更便利.对于%最烦人的是它无法同时传递一个变量和元组.你可能会想下面的代码不会有什么问题:
"hi there %s" % name
但是,如果name恰好是(1,2,3),它将会抛出一个TypeError异常.为了保证它总是正确的,你必须这样做:
"hi there %s" % (name,) # 提供一个单元素的数组而不是一个参数
但是有点丑 .format就没有这些问题.而且format可以实现模运算符(%)不能做的事
tu = (12,45,22222,103,6)
print('{0} {2} {1} {2} {3} {2} {4} {2}'.format(*tu))
#结果 12 22222 45 22222 103 22222 6 22222
另一点format()作为一个函数,可以用作其他函数的参数:
li = [12,45,78,784,2,69,1254,4785,984]
print(map('the number is {}'.format,li))
from datetime import datetime,timedelta
once_upon_a_time = datetime(2010, 7, 1, 12, 0, 0)
delta = timedelta(days=13, hours=8, minutes=20)
gen =(once_upon_a_time + x*delta for x in xrange(20))
print '\n'.join(map('{:%Y-%m-%d %H:%M:%S}'.format, gen))
2010-07-01 12:00:00
2010-07-14 20:20:00
2010-07-28 04:40:00
2010-08-10 13:00:00
2010-08-23 21:20:00
2010-09-06 05:40:00
2010-09-19 14:00:00
2010-10-02 22:20:00
2010-10-16 06:40:00
2010-10-29 15:00:00
2010-11-11 23:20:00
2010-11-25 07:40:00
2010-12-08 16:00:00
2010-12-22 00:20:00
2011-01-04 08:40:00
2011-01-17 17:00:00
2011-01-31 01:20:00
2011-02-13 09:40:00
2011-02-26 18:00:00
2011-03-12 02:20:00
5 迭代器和生成器
将列表生成式中[]改成() 之后数据结构发生改变 ,从列表变为生成器. 在for...in...语句中的都是可迭代的:比如lists,strings,files...因为这些可迭代的对象你可以随意的读取,所以非常方便易用,但是你必须把它们的值放到内存里,当它们有很多值时就会消耗太多的内存.
>>> L = [x*x for x in range(10)] #迭代器
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]#列表
>>> g = (x*x for x in range(10)) #生成器
>>> g
<generator object <genexpr> at 0x0000028F8B774200>#生成器对象
通过列表生成式,可以直接创建一个列表。但是受到内存限制,列表容量肯定是有限的。而且,创建一个包含百万元素的列表,不仅是占用很大的内存空间,如:我们只需要访问前面的几个元素,后面大部分元素所占的空间都是浪费的。因此,没有必要创建完整的列表(节省大量内存空间)。在Python中,我们可以采用生成器:边循环,边计算的机制—>generator
生成器的关键字yield: 理解Yield你必须先理解当你调用函数的时候,函数里的代码并没有运行.函数仅仅返回生成器对象
>>> def createGenerator():
... mylist = range(3)
... for i in mylist:
... yield i*i
...
>>> mygenerator = createGenerator() # 创建生成器
>>> print(mygenerator) # mygenerator is an object!
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
... print(i)
0
1
4
当你的函数要返回一个非常大的集合并且你希望只读一次的话,那么它就非常的方便了.
Python迭代器生成器,私有变量及列表字典集合推导式(二)的更多相关文章
- python3 列表/字典/集合推导式
'''列表推导式[结果 fox循环 if语句]'''lst = ["Python周末%s期" % i for i in range(1, 27) if i%2 == 0]print ...
- python数据类型详解及列表字典集合推导式详解
一.运算符 Python语言支持以下类型的运算符: 算术运算符 如: #!/usr/bin/env python # -*- coding:utf-8 -*- a = 5 b = 6 print(a ...
- python基础学习Day12 生成器、列表推导式、字典的表达式、字典键值对的互换、集合推导式
一.生成器 1.1 生成器:就是(python)自己用代码写的迭代器,生成器的本质就是迭代器. 1.2 生成器函数 def func1(x): x += print() yield x print() ...
- python 列表推导式,生成器推导式,集合推导式,字典推导式简介
1.列表推导式multiples = [i for i in range(30) if i % 2 is 0]names = [[],[]]multiples = [name for lst in n ...
- python迭代器,生成器,推导式
可迭代对象 字面意思分析:可以重复的迭代的实实在在的东西. list,dict(keys(),values(),items()),tuple,str,set,range, 文件句柄(待定) 专业角度: ...
- Python迭代器&生成器&装饰器
1. 迭代器 1.1 可迭代对象(Iterator) 迭代器协议:某对象必须提供一个__next__()方法,执行方法要么返回迭代中的下一项,要么引起一个Stopiteration异常,以终止迭代(只 ...
- Python迭代器生成器与生成式
Python迭代器生成器与生成式 什么是迭代 迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果.每一次对过程的重复称为一次"迭代",而每一次迭代得到的结果会作为下一次迭 ...
- python的各种推导式(列表推导式、字典推导式、集合推导式)
推导式comprehensions(又称解析式),是Python的一种独有特性.推导式是可以从一个数据序列构建另一个新的数据序列的结构体. 共有三种推导,在Python2和3中都有支持: 列表(lis ...
- Python中的推导式(列表推导式、字典推导式、集合推导式)
推导式comprehensions(又称解析式),是Python的一种独有特性.推导式是可以从一个数据序列构建另一个新的数据序列的结构体. 共有三种推导,在Python2和3中都有支持: 列表(lis ...
随机推荐
- abp学习资料
参考: https://www.jianshu.com/p/a6e9ace79345
- Tensorlflow-解决非线性回归问题
import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt #使用numpy生成200个随机点,范围从-0.5到0 ...
- Vue-cli 构建项目 的`.vue`组件中, scss中添加背景图路径问题
[解决方法]: 更改build/utils.js文件中的 ExtractTextPlugin 的 options配置. if (options.extract) { return ExtractTex ...
- aoj0558
一.题意: 在H * W的地图上有N个奶酪工厂,分别生产硬度为1-N的奶酪.有一只吃货老鼠准备从老鼠洞出发吃遍每一个工厂的奶酪.老鼠有一个体力值,初始时为1,每吃一个工厂的奶酪体力值增加1(每个工厂只 ...
- groovy——运行方式、基本语法、引入方式、metaClass
jvm运行groovy类有两种方式: 1.使用groovyc编译所有的*.groovy为java的*.class文件,把这些*.class文件放在java类路径中,通过java类加载器来加载这些类. ...
- SQL Server Reporting Service(SSRS) 第七篇 常见错误汇总
1. The current action cannot be completed. The user data source credentials do not meet the requirem ...
- 5. AQS(AbstractQueuedSynchronizer)抽象的队列式的同步器
5.1 AbstractQueuedSynchronizer里面的设计模式--模板模式 模板模式:父类定义好了算法的框架,第一步做什么第二步做什么,同时把某些步骤的实现延迟到子类去实现. 5.1.1 ...
- Linux 运维之硬链接与软链接详解
了解这个的时候不如先知道下文件吧. 我们知道文件都有文件名与数据,但是呢这个在 Linux 上被分成两个部分:用户数据 (user data) 与元数据 (metadata). 用户数据,即文件数据块 ...
- malloc的可重入性和线程安全分析
malloc函数是一个我们经常使用的函数,如果不对会造成一些潜在的问题.下面就malloc函数的线程安全性和可重入性做一些分析. 我们知道一个函数要做到线程安全,需要解决多个线程调用函数时访问共享资源 ...
- Vim as a Python IDE
参考视频:http://v.youku.com/v_show/id_XNDY4NTM4NzY0.html 好的,在我们默认的centos6的操作系统中使用的python2,我们一般会再去安装一个pyt ...