POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)
传送门:
http://poj.org/problem?id=3666
|
Making the Grade
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down). You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is
Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer. Input * Line 1: A single integer: N Output * Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation. Sample Input 7 Sample Output 3 Source |
题目意思:
给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调增或者单调减(不严格).
参考了一下网友的思想:https://www.cnblogs.com/Philip-Tell-Truth/p/4916026.html
就是农夫要修一条路,现在要求这条路要么就是上升的,要么就是下降的,总代价为∑|a[i]-b[i]|,求代价最低的修路方案, (0 ≤ β≤ 1,000,000,000) , (1 ≤ N ≤ 2,000)
这一题百分百就是DP了,为什么?我们现在就是要让cost最小,但是我们不知道cost应该怎么才能最小。
我们可以这么想,因为序列总是上升或者下降的,我们可以考虑上升的情况,假设前几个数组成的最大值为β,我们要考虑从0-β的改变值,然后不断推到第n个序列。
显然,这样的复杂度为0(Nβ^2),当然这样的复杂度显然是出事的。
现在我们想着优化这个东西,我们可以这么想,如果我们像之前那样扫描的话,那么其实我们忽略了一个很重要的事实,就是在变到α(α<β),其实对于α+1~β之内不会对α造成影响,于是我们可以用一个最小值的临时变量储存在α之前的最小值,用这个更新dp即可,那样就少了一次扫β的复杂度
复杂度变为O(Nβ);
但是如果仅仅是这样的话,绝对是TLE,因为β实在是太大了。
那么我们就要用到离散化的思想,把β投影到有限区域中,既然β是大小的函数,那么我们把可以这样对应:我们只用把新的序列按从小到大排列,然后只对下标进行查找就可以了,这样我们就把解的空间变到下标中了。
最后状态转移方程:dp[i-1][j]=ABS(a[i]-b[j])+min(dp[i-1][j]);(用滚动数组就可以了)
具体做法:
那么先对原数列排序
1 3 2 4 5 3 9 -> 1 2 3 3 4 5 9
然后dp[i][j] 表示第i个数, 把他变成 b[j] 所要画的最小代价
dp[i][j] = dp[i-1] [ 0~j] + abs(b[j] - a[i]) 以此循环。
#include<stdio.h>
#include<string.h>
#include<memory>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define max_v 2005
#define INF 0x7fffffff
int n;
int dp[max_v];
int e[max_v];
int b[max_v];
int main()
{
/*
首先可以看出变化后的序列中所有的数一定还在原数列中,
那么先对原数列排序 a b
1 3 2 4 5 3 9 -> 1 2 3 3 4 5 9
然后dp[i][j] 表示第i个数, 把他变成 b[j] 所要画的最小代价
dp[i][j] = dp[i-1] [ 0~j] + abs(b[j] - a[i]) 以此循环。
*/
cin>>n;
for(int i=;i<n;i++)
{
cin>>e[i];
b[i]=e[i];
}
sort(b,b+n);//升序之后的数组,对比e
int ans=INF;
int t;
for(int i=;i<n;i++)
{
t=INF;
for(int j=;j<n;j++)
{
t=min(t,dp[j]);
dp[j]=abs(b[j]-e[i])+t;
}
}
for(int i=;i<n;i++)
{
ans=min(ans,dp[i]);
}
printf("%d\n",ans);
return ;
}
POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)的更多相关文章
- Poj 3666 Making the Grade (排序+dp)
题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...
- kaungbin_DP S (POJ 3666) Making the Grade
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- POJ 3666 Making the Grade
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- 【编程题目】请修改 append 函数,利用这个函数实现两个非降序链表的并集
42.请修改 append 函数,利用这个函数实现(链表):两个非降序链表的并集,1->2->3 和 2->3->5 并为 1->2->3->5另外只能输出结 ...
- poj 3666 Making the Grade(dp离散化)
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7068 Accepted: 3265 ...
- POJ 3666 Making the Grade (动态规划)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- poj 3666 Making the Grade(dp)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- python小练习: 给定一个数组 按重复次数 降序排列输出 数组非空且为正整数
假设有个列表 a=[1,1,1,2,2,4,5,5,5,5] (非空且为正整数) 那么根据要求 最终输出的形式为 5,1,2,4 (按重复次数 降序排列输出) 代码实现及解释: a=[1,1,1 ...
- POJ - 3666 Making the Grade(dp+离散化)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
随机推荐
- python制作 whl 源文件,并制作本地pip源
制作whl 1.创建用于存放wheel文件目录 mkdir wheels 2.安装wheel库 pip install wheel 3.进入wheels目录 cd wheels 4.使用pip wh ...
- ZwQueryVirtualMemory暴力枚举进程模块
0x01 前言 同学问过我进程体中EPROCESS的三条链断了怎么枚举模块,这也是也腾讯面试题.我当时听到也是懵逼的. 后来在网上看到了一些内存暴力枚举的方法ZwQueryVirtualMemory. ...
- 深入学习keepalived之预备工作--线程
1. 线程的定义 1.1 线程定义在scheduler.h文件中,其定义如下所示 /* Thread itself. */ typedef struct _thread { unsigned long ...
- 生成正射影像/DSM,等高线提取
工具:ContextCapture,Globe Mapper 方法/步骤: 1.新建项目,导入影像,提交空三运算 在ContextCapture中新建项目,添加相关影像或视频和其他相关资源,资源,提交 ...
- Unity手册-Unity概述
Unity概述 Unity是一个强大引擎,他自带的多种工具可以满足你多种需求. 这种编辑器是直观的可定制的,让你的工作更大的自由. 原文 Unity is a powerful engine with ...
- 解决The current branch is not configured for pull No value for key branch.master.merge found in config
使用Git Pull项目的时候出现这个问题: The current branch is not configured for pull No value for key branch.master. ...
- goto语句和标签
goto 语句用于将执行流更改到标签处,虽然t-sql和pl/sql都提供了该语句,但是作为编程而言,我们不推荐使用此编程技术.要编写一个标签,应当在标识符后面加一个冒号.列如,下面示例使用goto语 ...
- JUnit测试框架的使用
1.学习Junit框架的使用 可通过以下两个示例进行学习. A.Junit使用方法示例1 1)把Junit引入当前项目库中 新建一个 Java 工程—coolJUnit,打开项目coolJUnit 的 ...
- windows使用bat文件定时备份文件
遇到一个需求,需要备份Access数据库,Access生成的数据都保存在xx.mdb文件中,所以考虑使用windows任务 定时执行一个备份文件的bat文件来解决这个问题. backup.bat文件代 ...
- 02.List泛型集合
List泛型可以转换成数组 List泛型和数组的相同点: List泛型的数据类型必须是指定的,数组的数据类型也必须是指定的. List泛型和数组的不同点: List泛型的长度是随意的,而数组的长度必须 ...