传送门:

http://poj.org/problem?id=3666

Making the Grade
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9468   Accepted: 4406

Description

A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

|A1 - B1| + |A2 - B2| + ... + |AN - BN |

Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

Input

* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

Output

* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

Sample Input

7
1
3
2
4
5
3
9

Sample Output

3

Source

 
 

题目意思:

给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调增或者单调减(不严格).

参考了一下网友的思想:https://www.cnblogs.com/Philip-Tell-Truth/p/4916026.html

就是农夫要修一条路,现在要求这条路要么就是上升的,要么就是下降的,总代价为∑|a[i]-b[i]|,求代价最低的修路方案, (0 ≤ β≤ 1,000,000,000) , (1 ≤ N ≤ 2,000)

  这一题百分百就是DP了,为什么?我们现在就是要让cost最小,但是我们不知道cost应该怎么才能最小。

  我们可以这么想,因为序列总是上升或者下降的,我们可以考虑上升的情况,假设前几个数组成的最大值为β,我们要考虑从0-β的改变值,然后不断推到第n个序列。

  显然,这样的复杂度为0(Nβ^2),当然这样的复杂度显然是出事的。  

  现在我们想着优化这个东西,我们可以这么想,如果我们像之前那样扫描的话,那么其实我们忽略了一个很重要的事实,就是在变到α(α<β),其实对于α+1~β之内不会对α造成影响,于是我们可以用一个最小值的临时变量储存在α之前的最小值,用这个更新dp即可,那样就少了一次扫β的复杂度

  复杂度变为O(Nβ);

  但是如果仅仅是这样的话,绝对是TLE,因为β实在是太大了。

  那么我们就要用到离散化的思想,把β投影到有限区域中,既然β是大小的函数,那么我们把可以这样对应:我们只用把新的序列按从小到大排列,然后只对下标进行查找就可以了,这样我们就把解的空间变到下标中了。

   最后状态转移方程:dp[i-1][j]=ABS(a[i]-b[j])+min(dp[i-1][j]);(用滚动数组就可以了)

具体做法:

    首先可以看出变化后的序列中所有的数一定还在原数列中,
     那么先对原数列排序
        a                  b
   1 3 2 4 5 3 9 -> 1 2 3 3 4 5 9
   然后dp[i][j]  表示第i个数, 把他变成 b[j] 所要画的最小代价
   dp[i][j] = dp[i-1] [ 0~j] + abs(b[j] - a[i])   以此循环。
 
code:
#include<stdio.h>
#include<string.h>
#include<memory>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define max_v 2005
#define INF 0x7fffffff
int n;
int dp[max_v];
int e[max_v];
int b[max_v];
int main()
{
/*
首先可以看出变化后的序列中所有的数一定还在原数列中,
那么先对原数列排序 a b
1 3 2 4 5 3 9 -> 1 2 3 3 4 5 9
然后dp[i][j] 表示第i个数, 把他变成 b[j] 所要画的最小代价
dp[i][j] = dp[i-1] [ 0~j] + abs(b[j] - a[i]) 以此循环。
*/
cin>>n;
for(int i=;i<n;i++)
{
cin>>e[i];
b[i]=e[i];
}
sort(b,b+n);//升序之后的数组,对比e
int ans=INF;
int t;
for(int i=;i<n;i++)
{
t=INF;
for(int j=;j<n;j++)
{
t=min(t,dp[j]);
dp[j]=abs(b[j]-e[i])+t;
}
}
for(int i=;i<n;i++)
{
ans=min(ans,dp[i]);
}
printf("%d\n",ans);
return ;
}

POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)的更多相关文章

  1. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  2. kaungbin_DP S (POJ 3666) Making the Grade

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  3. POJ 3666 Making the Grade

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  4. 【编程题目】请修改 append 函数,利用这个函数实现两个非降序链表的并集

    42.请修改 append 函数,利用这个函数实现(链表):两个非降序链表的并集,1->2->3 和 2->3->5 并为 1->2->3->5另外只能输出结 ...

  5. poj 3666 Making the Grade(dp离散化)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7068   Accepted: 3265 ...

  6. POJ 3666 Making the Grade (动态规划)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  7. poj 3666 Making the Grade(dp)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  8. python小练习: 给定一个数组 按重复次数 降序排列输出 数组非空且为正整数

    假设有个列表  a=[1,1,1,2,2,4,5,5,5,5] (非空且为正整数) 那么根据要求 最终输出的形式为  5,1,2,4  (按重复次数 降序排列输出) 代码实现及解释: a=[1,1,1 ...

  9. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

随机推荐

  1. 【JAVA】重载和重写的区别

    重写(Overriding) 重写规则 1. 参数列表:必须与被重写方法的参数列表完全匹配.  2. 返回类型:必须与超类中被重写的方法中声明的返回类型或子类型完全相同  3. 访问级别:一定不能比被 ...

  2. Scala安装及开发环境搭建

    最近想学习下scala,为后面转大数据做一些沉淀. 1. 首先保证jdk已经成功安装 2. 去官网下载scala安装程序 http://www.scala-lang.org/download/all. ...

  3. 一个典型案例为你解读TDSQL 全时态数据库系统

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯技术工程官方号发表在腾讯云+社区 经典案例 增量抽取.增量计算等都是T-TDSQL的经典案例.如下以增量计算为例,来分析T-TDS ...

  4. 阻止事件的默认行为,例如click <a>后的跳转~

    在W3C中,使用preventDefault()方法: 在IE中,使用window.event.returnValue = false.

  5. gcc 链接非标准名称库

    一般库的标准名称是libxxx.so或者libxxx.a, 如果没有, 也可以搞个linkname出来, 那就可以直接用 "-lxxx" 来链接了, 但要是你想直接用realnam ...

  6. CSS3 -webkit-transform(元素变换)

    CSS3 -webkit-transform(元素变换)   -webkit-transform:none | 类型 类型:scale:缩放,1为原始大小.scale(x).正数放大,负数缩小.属性值 ...

  7. swagger快速开发

    转载:https://blog.csdn.net/xxoo00xx00/article/details/77163399 swagger 学习笔记 搭建环境: 1,jdk1.8 2,idea 3,sp ...

  8. CKRule业务规则管理系统部署说明

    1.   程序包说明 软件是使用WinForm开发的,包含服务端和客户端,服务端部署在IIS上面,客户端可以在已经安装.Net4.0的windows上面运行. 1.1.  服务端程序包 CKBrmsS ...

  9. WebSettings 最全属性说明

    setAllowContentAccess (boolean allow) 是否允许在WebView中访问内容URL(Content Url),默认允许.内容Url访问允许WebView从安装在系统中 ...

  10. Consul在linux系统, 群集实战

    Consul作为微服务的服务注册与发现组件,是非常重要的一部分 目前想用Consul作为配置管理的统一管理 准备两台机器 11.11.11.1011.11.11.20 下载consul linux版  ...