题目描述

小Q正在设计一种棋类游戏。在小Q设计的游戏中,棋子可以放在棋盘上的格点中。某些格点之间有连线,棋子只能在有连线的格点之间移动。整个棋盘上共有V个格点,编号为0,1,2…,V-1,它们是连通的,也就是说棋子从任意格点出发,总能到达所有的格点。小Q在设计棋盘时,还保证棋子从一个格点移动到另外任一格点的路径是唯一的。小Q现在想知道,当棋子从格点0出发,移动N步最多能经过多少格点。格点可以重复经过多次,但不重复计数。

输入

第一行包含2个正整数V,N,其中V表示格点总数,N表示移动步数。
接下来V-1行,每行两个数Ai,Bi,表示编号为Ai,Bi的两个格点之间有连线。
V,N≤100, 0 ≤Ai,Bi<V 

输出

输出一行一个整数,表示最多经过的格点数量。

样例输入

5 2
1 0
2 1
3 2
4 3

样例输出

3


题解

树上dfs+贪心

先dfs求出以0为起点的最长一条链,这条链上的点只经过一次,消耗1步;其它的点经过后需要返回这条链上,消耗2步。

然后分类讨论是否能走完链和走完树即可。

#include <cstdio>
#define N 110
int head[N] , to[N << 1] , next[N << 1] , cnt , deep[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
deep[to[i]] = deep[x] + 1 , dfs(to[i] , x);
}
int main()
{
int n , p , i , x , y , l = 0;
scanf("%d%d" , &n , &p);
for(i = 1 ; i < n ; i ++ )
scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs(0 , -1);
for(i = 1 ; i < n ; i ++ )
if(l < deep[i])
l = deep[i];
if(p <= l) printf("%d\n" , p + 1);
else if(p >= l + 2 * (n - l - 1)) printf("%d\n" , n);
else printf("%d\n" , l + (p - l) / 2 + 1);
return 0;
}

【bzoj4813】[Cqoi2017]小Q的棋盘 树上dfs+贪心的更多相关文章

  1. [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)

    4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 804  Solved: 441[Submit][Statu ...

  2. [bzoj4813][Cqoi2017]小Q的棋盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上共有V ...

  3. 2019.03.11 bzoj4813: [Cqoi2017]小Q的棋盘(贪心)

    传送门 考虑最后所有走过的点构成的树,显然除了最长链走一遍以外每条轻链都走两遍. 于是求一波最长链搞一搞就完了. 注意几个小细节特判qwq 代码: #include<bits/stdc++.h& ...

  4. BZOJ4813 CQOI2017小Q的棋盘(树形dp)

    设f[i][j]为由i号点开始在子树内走j步最多能经过多少格点,g[i][j]为由i号点开始在子树内走j步且回到i最多能经过多少格点,转移显然. #include<iostream> #i ...

  5. bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

    4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...

  6. BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs

    BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...

  7. 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告

    P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...

  8. 【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)

    [BZOJ4813][CQOI2017]小Q的棋盘(贪心) 题面 BZOJ 洛谷 题解 果然是老年选手了,这种题都不会做了.... 先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树 ...

  9. bzoj 4813: [Cqoi2017]小Q的棋盘

    Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格点之间移动.整个棋盘上共有V个格点,编号为0,1,2-,V- ...

随机推荐

  1. 通过Ops Manager安装管理mongodb-3.4集群

    node1 Ops Manager,mongodb,agent node2 mongodb,agent node3 mongodb,agent 参考文档 https://docs.opsmanager ...

  2. pyecharts的简单使用

    由于需要在项目中展示数据,查了查资料发现,pyecharts模块在网页数据展示方面有很大优势,所以就学了点pyechas 参考博客:Python:数据可视化pyecharts的使用 - JYRoy - ...

  3. admin添加用户时报错:(1452, 'Cannot add or update a child row: a foreign key constraint fails (`mxonline`.`django_admin_l

    在stackoverflow找到答案: DATABASES = { 'default': { ... 'OPTIONS': { "init_command": "SET ...

  4. linux进程篇 (一) 进程的基本概念

    进程是系统资源分配的最小单位. 1.创建和执行 父进程通过 fork 系统调用创建子进程, 子进程被创建后,处于创建状态. linux为子进程配置数据结构,如果内存空间足够,子进程就在内核中就绪,成为 ...

  5. Str_turn

    public class Str_turn { public static void main(String args[]) { String Str1 = new String("This ...

  6. C++ 求阶乘

    #include<iostream> using namespace std; ; //输入阶乘数 int main() { long long factorial[size]; fact ...

  7. R语言学习笔记(六): 列表及数据框的访问

    List R语言中各组件的名称叫做标签(tags),访问列表有3种方法: j$salary 通过标签名字访问,只要不引起歧义,可以只写出前几个字母. j[['sal']] 夹在两个中括号时引号里的标签 ...

  8. ORACLE中order by造成分页不正确原因分析

     工作中遇到的问题: 为调用方提供一个分页接口时,调用方一直反应有部分数据取不到,且取到的数据有重复的内容,于是我按以下步骤排查了下错误. 1.检查分页页码生成规则是否正确. 2.检查SQL语句是否正 ...

  9. Can’t delete list item in Sharepoint2013

         Today,I have meet a very strange error.When I attempt to delete a item from a list,I recieve an ...

  10. 初探Qt Opengl【1】

    最近一直在学习Qt的opengl绘图,看到好多资源都是关于以前的旧版本的, 我将我这几天学的的部分关于opengl的做个总结,也希望对需要学习的人有一定的帮助 在我的学习中,我主要用到一下三个方法 # ...