~~~题面~~~

题解:

  可以发现这是一道单调栈的题目,首先来考虑数字没有重复时如何统计贡献。

  因为这是一个环,而如果我们从最高的点把环断开,并把最高点放在链的最后面(顺时针移动),那么因为在最高点两侧的点无法互相看见,相当于就把环转化为链的问题了。

  

  因此维护递减的单调栈,如果进来的点比栈顶高就弹出并统计1的贡献。

  但是这样会有遗漏,我们观察什么情况下会遗漏。

  因为是从1开始遍历,因此在前面的节点在遍历到n时完全有可能已经被弹走了,然而因为这是一个环,断开点(最高点)说不定还可以回头看见它。因此这种情况会被遗漏。

  但如果又反着统计又会统计重复,因此考虑不统计最高点的贡献,然后最后再暴力跑2遍统计断开点的贡献。

  但是数字可能有重复,怎么办?

  重复数字会带来很多细节上的问题,比如8333中有5的贡献,而直接弹走显然统计不到5.又比如最大值可能有很多个,因此会将整个数列分为很多小段,,,等等诸如此类。

  因此对于第一种情况,我们记录一下当前栈中每个数字有多少个,因为数字可能很大,但个数不多,因此一开始要离散化一下。

  对于第二种情况,可以在最后暴力统计一下最高点两两搭配的方案数。
  细节很多,注意调试&对拍

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1001000
#define LL long long int n, id, k, maxn, num, last, cnt;
LL ans;
int ss[AC], t[AC], tot[AC];
int s[AC], top;
bool vis[AC]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline void upmax(int &a, int b)
{
if(b > a) a = b;
} inline int get(int x)
{
if(x < ) x += n;
return x > n ? x - n : x;
} int half(int x)
{
int l = , r = cnt;
while(l < r)
{
int mid = (l + r) >> ;
if(ss[mid] == x) return mid;
else if(ss[mid] < x) l = mid + ;
else r = mid - ;
}
return l;
} void pre()
{
n = read();
for(R i = ; i <= n; i ++)
{
ss[i] = read();
if(ss[i] > k) id = i, k = ss[i], num = ;
else if(ss[i] == k) ++ num;
}
id = get(id + );
for(R i = ; i <= n; i ++) t[i] = ss[get(id + i - )];
sort(ss + , ss + n + );
for(R i = ; i <= n; i ++)
if(ss[i] != ss[i + ]) ss[++cnt] = ss[i];
for(R i = ; i <= n; i ++) t[i] = half(t[i]);
k = cnt;
} /*8
3 1 5 7 1 1 7 8 */
void work()
{
for(R i = ; i < n; i ++)//不统计中断处的
{
int tmp = (top && s[] != t[i]);
// printf("%d\n", top);
while(top && s[top] < t[i]) -- tot[s[top]], -- top, ++ ans;
if(top && s[top] != t[i]) ++ ans;
++ tot[t[i]], s[++top] = t[i];
if(tot[t[i]] - ) ans += tot[t[i]] - + tmp;
// printf("%d\n", top);
}
for(R i = ; i <= n; i ++)
{
if(t[i] == k) break;
if(vis[i]) continue;
if(t[i] >= maxn && !vis[i]) ++ ans, vis[i] = true;
upmax(maxn, t[i]);
}
maxn = ;
for(R i = n - ; i; i --)
{
if(t[i] == k) break;
if(t[i] >= maxn && !vis[i]) ++ ans, vis[i] = true;
upmax(maxn, t[i]);
}
if(num > ) ans += num * (num - ) / - (num - ) * (num - ) / ;
printf("%lld\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
pre();
work();
// fclose(stdin);
return ;
}

[51nod1482]部落信号 单调栈的更多相关文章

  1. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  2. BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]

    4453: cys就是要拿英魂! Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 46[Submit][Status][Discu ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  4. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  5. bzoj1510: [POI2006]Kra-The Disks(单调栈)

    这道题可以O(n)解决,用二分还更慢一点 维护一个单调栈,模拟掉盘子的过程就行了 #include<stdio.h> #include<string.h> #include&l ...

  6. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  7. 洛谷U4859matrix[单调栈]

    题目描述 给一个元素均为正整数的矩阵,上升矩阵的定义为矩阵中每行.每列都是严格递增的. 求给定矩阵中上升子矩阵的数量. 输入输出格式 输入格式: 第一行两个正整数n.m,表示矩阵的行数.列数. 接下来 ...

  8. POJ3250[USACO2006Nov]Bad Hair Day[单调栈]

    Bad Hair Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17774   Accepted: 6000 Des ...

  9. CodeForces 548D 单调栈

    Mike and Feet Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Subm ...

随机推荐

  1. Python 一些好玩的函数

    一.匿名函数 什么匿名是函数: 不需要使用def函数名的函数或者子程序 函数语法: lambda 参数:表达式 函数特点: 1.lambda只是一个表达式,省去定义函数过程,让代码更精简 2.lamb ...

  2. PHP 使用程序进行数据库字典文件生成 导出数据库字典

    作为一个程序员肯定是不愿意写文档的!!! 尤其最麻烦的数据库字典文档 所以偷懒写了一个PHP程序来进行数据库字典导出 记录一下  以免以后忘记 //使用的是Laravel框架 可以转换成原生导出$ta ...

  3. 讯为iTop4412嵌入式开发板学习之-------前言

    一.linux 工作的分类以及培养时间 Linux 作为一个庞大的体系,有很多相关的研究领域,总结起来大致有五个方向: 1.服务器维护:需要了解 Linux 服务,熟练使用 Shell,了解网络配置. ...

  4. python递归函数(计算阶乘)

    def f1(x,x1=1): if x == 1: return x1 #x1这个值为我们所需要的值,所以返回 x1 *= x r = f1(x-1,x1) #r接收返回值,并在下面接着返回 ret ...

  5. Makefile中wildcard的介绍

    在Makefile规则中,通配符会被自动展开.但在变量的定义和函数引用时,通配符将失效.这种情况下如果需要通配符有效,就需要使用函数“wildcard”,它的用法是:$(wildcard PATTER ...

  6. LeetCode 二叉树的层次遍历 C++

    给定一个二叉树,返回其按层次遍历的节点值. (即逐层地,从左到右访问所有节点). 例如:给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回其层 ...

  7. 基于jQuery的2048小游戏设计(网页版)

    上周模仿一个2048小游戏,总结一下自己在编写代码的时候遇到的一些坑. 游戏规则:省略,我想大部分人都玩过,不写了 源码地址:https://github.com/xinhua6/2048game.g ...

  8. docker学习(一) 安装

    一.什么是docker 参见https://baike.baidu.com/item/Docker/13344470?fr=aladdin 个人的理解是,通俗来说,就是相当于一个方便携带且个体独立的虚 ...

  9. django生产环境中部署

    https://www.cnblogs.com/chenice/p/6921727.html 本节内容 uwsgi 介绍 uwsgi安装使用 nginx安装配置 django with nginx 如 ...

  10. Python3全栈学习目录

    http://www.cnblogs.com/wupeiqi/articles/4938499.html 文辉整理: http://blog.51cto.com/9272317/1869914