从统计学statistics的观点看概率分布
已知数据x,希望得到未知label y,即得到映射x-->y:
几个概念:
1)p(x): data distribution 数据分布
2)p(y): prior distribution 先验分布
a priori: Knowable without appeal to particular experience
a priori distribution: special meaning, do not misuse
3)p(x, y): join distribution 联合分布
4)p(x|y = i): class conditional distribution 类条件分布
5)p(y|x): posterior distribution 后验分布
如何表示/估计概率密度:
1)参数估计 - parametric estimation
Parametric:假设PDF服从某种函数形式(functional form)
如高斯分布的函数形式,包含若干参数。当指定参数值之后,PDF就完全确定。
不同的概率分布由不同的参数值决定。估计PDF就是估计参数parameter estimation
2)非参数估计 - non-parametric estimation
不假设PDF是任何已知形式的函数。
如何估计?
使用训练数据直接估计空间中任意点的密度;p(x|D)
非参数不代表无参数!!!!
实际上是允许有无穷多的参数,而参数估计的参数个数是有限的。
统计学习方法的粗略分类:
1)生成模型Generative(probabilistic) models:估计p(x|y=i)和p(x),然后用贝叶斯定理求p(y=i|x).
2)判别模型Discriminative(probabilistic) models:直接估计p(y=i|x)。
3)判别函数Discriminant function:直接求一个把各类分来的边界。不假设概率模型,如FLD,SVM等。
其中。生成模型和判别模型分为两个步骤:
a. 推理inference:估计各种密度函数;
b. 决策decision:根据估计得到的PDF对任意的x给出输出。
从统计学statistics的观点看概率分布的更多相关文章
- Python统计学statistics实战
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...
- 机器学习模型 bias 和 variance 的直观判断
假设我们已经训练得到 一个模型,那么我们怎么直观判断这个 模型的 bias 和 variance? 直观方法: 如果模型的 训练错误 比较大,并且 验证错误 和 训练错误 差不多一样,都比较大,我们就 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- 图灵数学·统计学丛书.PDF(53本全)
图灵数学·统计学丛书01-概率论及其应用(第1卷·第3版)-[美]William.Feller-人民邮电出版社.pdf 图灵数学·统计学丛书01-金融数学:衍生产品定价引论-[英]M·巴克斯特& ...
- sql查询性能调试,用SET STATISTICS IO和SET STATISTICS TIME---解释比较详细
一个查询需要的CPU.IO资源越多,查询运行的速度就越慢,因此,描述查询性能调节任务的另一种方式是,应该以一种使用更少的CPU.IO资源的方式重写查询命令,如果能够以这样一种方式完成查 ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- numpy-Randow
Randow使用 http://blog.csdn.net/pipisorry/article/details/39508417 概率相关使用 转:http://www.cnblogs.com/Nau ...
- PLSA及EM算法
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture ...
- 深度学习读书笔记之RBM(限制波尔兹曼机)
深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的 ...
随机推荐
- HTML自定义Checkbox框背景色
input[type=checkbox]{ margin-right:5px; width:13px; height:13px; }input[type=checkbox]:after { width ...
- 微信小程序引用iconfont图标字体解决方案;
1)首先,登录阿里巴巴iconfont.cn 2)新建项目 3)点击icon收藏 4)加入到test项目中 5)下载到本地解压 6)生成代码 7)复制iconfont.css到xxx.wx ...
- My First Marathon【我的第一次马拉松】
My First Marathon A month before my first matathon, one of my ankles was injured and this meant not ...
- 笔记-flask-原理及请求处理流程
笔记-flask-原理及请求处理流程 1. 服务器声明及运行 最基本的flask项目代码如下 from flask import Flask app = Flask(__name__) @a ...
- Android开发——Google关于Application Not Responding的建议
秒内没有执行完毕. 2. 避免ANR的一些建议 Android applications normally run entirely on asingle (i.e. main) thre ...
- Java:static的作用分析
static表示“静态”或者“全局”的意思,但在Java中不能在所有类之外定义全局变量,只能通过在一个类中定义公用.静态的变量来实现一个全局变量. 一.静态变量 1. Java中存在两种变量,一种是s ...
- lnmp操作
LNMP 1.2+状态管理: lnmp {start|stop|reload|restart|kill|status}LNMP 1.2+各个程序状态管理: lnmp {nginx|mysql|mari ...
- Win10启动不了的问题处理记录
前几天电脑突然出现蓝屏的情况,而且使用Win10自带的修复功能根本没有卵用,修复不了,很郁闷,死活进不了系统了,说什么“INACCESSABE BOOT DEVICE”,好像是引导设备不可用. 到网上 ...
- Vue学习(三):数据绑定语法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Bugku 速度要快
import requests import base64 url="http://123.206.87.240:8002/web6/" res=requests.get(url) ...