题面

题解

不考虑每种食材不超过一半的限制,答案是

减去 1 是去掉一道菜都不做的方案。

显然只可能有一种菜超过一半,于是枚举这种菜,对每个方式做背包即可(记一维状态表示这种菜比别的菜多做了多少份)。

设dp[i][j]为前i种方法中这种食材比别人多j份,

则  

于是从零开始枚举j就行了

不对,我们可以意识到dp[i][ - | j |]也对答案有影响,

所以我们设dp[i][n]为原先的dp[i][0],n以下的是负数情况

#include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + s - '0';s = getchar();}
return x * f;
}
int mod = 998244353;
int n,m,i,j,s,o,k;
LL a[105][2005];
LL dp[2][205];
LL ans = 0;
int main() {
// freopen("meal.in","r",stdin);
// freopen("meal.out","w",stdout);
n = read();m = read();
ans = 1;
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= m;j ++) {
a[i][j] = read();
a[i][0] += a[i][j];
a[i][0] %= mod;
}
ans = ans * (a[i][0] + 1ll) % mod;
}
ans = (ans + mod - 1ll) % mod;
// printf("%lld\n",ans);
for(register int k = 1;k <= m;k ++) {
dp[0][n] = 1;
for(register int i = 1;i <= n;i ++) {
for(register int j = n + i;j >= n - i;j --) {
if(j) dp[i&1][j] = ((dp[1-(i&1)][j + 1] *1ll* (a[i][0] - a[i][k] + mod) % mod) + dp[1-(i&1)][j] + dp[1-(i&1)][j - 1] * a[i][k] % mod) % mod;
else dp[i&1][j] = ((dp[1-(i&1)][j + 1] *1ll* (a[i][0] - a[i][k] + mod) % mod) + dp[1-(i&1)][j]) % mod;
}
}
for(register int j = n + 1;j <= 2*n;j ++) {
ans = (ans + mod - dp[n&1][j]) % mod;
dp[0][j] = 0;
dp[0][j - n] = 0;
dp[1][j] = 0;
dp[1][j - n] = 0;
// printf("%lld ",dp[n&1][j]);
}//putchar('\n');
}
printf("%lld\n",ans);
return 0;
}

[CSP-S 2019 day2 T1] Emiya家今天的饭的更多相关文章

  1. 【CSP-S 2019】D2T1 Emiya 家今天的饭

    Description 传送门 Solution 算法1 32pts 爆搜,复杂度\(O((m+1)^n)\) 算法2 84pts 裸的dp,复杂度\(O(n^3m)\) 首先有一个显然的性质要知道: ...

  2. 洛谷P5664 Emiya 家今天的饭 问题分析

    首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...

  3. 洛谷P5664 Emiya 家今天的饭 题解 动态规划

    首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...

  4. [CSP-S 2019 Day2]Emiya家今天的饭

    思路: 这种题目就考我们首先想到一个性质.这题其实容易想到:超限的菜最多只有一个,再加上这题有容斥那味,就枚举超限的菜然后dp就做完了. 推式子能力还是不行,要看题解. 式子还需要一个优化,就是废除冗 ...

  5. 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】

    题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...

  6. Emiya家今天的饭 NOIP2019 (CSP?) 类DP好题 luoguP5664

    luogu题目传送门! 首先,硬求可行方案数并不现实,因为不好求(去年考场就这么挂的,虽然那时候比现在更蒟). 在硬搞可行方案数不行之后,对题目要求的目标进行转换: 可行方案数 = 总方案数 - 不合 ...

  7. 「CSP-S 2019」Emiya 家今天的饭

    description loj 3211 solution 看到题目中要求每种主要食材至多在一半的菜中被使用,容易想到补集转换. 即\(ans=\)总方案数-存在某一种食材在一半以上的菜中被使用的方案 ...

  8. CSP-S 2019 Emiya 家今天的饭

    64 pts 类似 乌龟棋 的思想,由于 \(64pts\) 的 \(m <= 3\), 非常小. 我们可以设一个 \(dp\),建立 \(m\) 个维度存下每种物品选了几次: \(f[i][A ...

  9. [CSP-S2019]Emiya 家今天的饭 题解

    CSP-S2 2019 D2T1 很不错的一题DP,通过这道题学到了很多. 身为一个对DP一窍不通的蒟蒻,在考场上还挣扎了1h来推式子,居然还有几次几乎推出正解,然而最后还是只能打个32分的暴搜滚粗 ...

随机推荐

  1. STL栈与队列

    #include<queue>// 队列 #include<stack>//栈 stack<int> s;//参数也是数据类型,这是栈的定义方式 queue< ...

  2. es6.4.2api

    这是讲数据库的数据导入到es里  所有用到了mysql! 1.依赖 <?xml version="1.0" encoding="UTF-8"?> & ...

  3. Canal-监听数据库表的变化

    1. 简介 Canal是阿里巴巴旗下的一款开源项目,纯Java开发.基于数据库增量日志解析,提供增量数据订阅&消费功能. 工作原理 Mysql主备复制原理 MySQL master 将数据变更 ...

  4. jvm造轮子

    博客内容来源于 刘欣老师的课程,刘欣老师的公众号 码农翻身 博客内容来源于 Java虚拟机规范(JavaSE7) 博客内容的源码 https://gitee.com/zumengjie/litejvm ...

  5. node开启 https线上服务你不会吗?

    var https=require("https");//https服务var fs = require("fs")var express = require( ...

  6. 效率效率!如何使用Python读写多个sheet文件

    前言 怎么样使用Python提高自己的工作效率,今天就给大家分享这个吧. 我们经常用pandas读入读写excel文件,经常会遇到一个excel文件里存在多个sheet文件,这个时候,就需要一次性读取 ...

  7. 如何查看/修改Redis密码

    一.修改密码: 打开redis.windows.conf文件,默认是没有红框框里这句话的,因为默认密码是"",就是没有,跟MySql一样. 加上这句话意思就是密码修改为 root ...

  8. 最著名的著名的比特币BTC钱包地址-中本聪的钱包

    最著名的著名的比特币BTC钱包地址-中本聪的钱包1.比特币创始人中本聪 1PTFYUG6nCzRrByoRfGT5kefUNuZjNF84o这个地址还是比特币的创世地址,比特币从未移动过,其中的50币 ...

  9. Oracle oci python sdk简单使用

    听说Oracle有个oracle always free计划,所以赶紧申请了个Oracle Cloud的账号,主要是用来FQ用的,之前用过Google的,不过只有1年的期限,由此看来这个很吸引人,搭建 ...

  10. war包解压与压缩

    解压:jar -xvf ROOT.war 压缩:jar -cvfM0 ROOT.war ./