FWT快速沃尔什变换——基于朴素数学原理的卷积算法
这是我的第一篇学习笔记,如有差错,请海涵...
目录
引子
首先,考虑这是兔子

数一数,会发现你有一只兔子,现在,我再给你一只兔子


再数一数,会发现什么?没错,你有两只兔子,也就是说,1+1=2!
这就是算数的基本原理了,聪明的你懂了吗?
好,我们可以学FWT了..
卷积形式
我们回忆一下多项式乘法的式子:
这个可以用FFT或NTT优化到O(nlogn)求出每一个Ci,但不是本章的重点,只是引出卷积的概念:
而FWT主要是解决以下三种卷积形式:
算法流程
卷积的算法原理就是把一个数列快速转换成另一种数列,然后每一位元素之间就可以直接单独相乘计算,最后再把答案数列快速转换回来。
FFT体现这个原理的方式就是把多项式转换成点值表达式,然后由于每个点的横坐标相同,纵坐标直接乘起来就得到最终的点值表达式,最后把答案的多项式表达通过点值表达式解出来。
那FWT怎么做呢?
首先就是数列长度的问题,我们知道,多项式乘法最终会得到一个长为lenA+lenB-1的多项式,而考虑位运算的卷积——很容易想出,最终的数列长度一定是,n是A、B大小转换为二进制后的数的最大位数。
我们设数列A的转换数列是DWT(A),转换后的数列A的原数列是IDWT(A)
既然它是位运算,那么我们就按位分治
我们从二进制最高位考虑起,每次把当前位为0或1的元素分开成两个数列,很显然,由于数列长度为,直接每次从中间分开就好了,
那么
这里的“{ , }”是把两个数列前后拼一起,A+B是把两个数列排头对齐,然后每一位相加。
具体的系数a,b,c,d是怎么样,or , and 和 xor 的情况是不一样的。
OR卷积
因为是按位或,所以当前位为1的对0没有影响,而0的元素都要对1有影响(0可以 | 1变成1,但是1怎么 | 都不会变成0),于是它的DWT就是这样
这样DWT(A)[i]就相当于下标按位或 i 后等于 i 的元素和,转换回去刚好就把当前位为1的减去为0的就行,即
这就是DWT的逆运算形式吧。
ps:巧合的是,这个玩意其实也是快速莫比乌斯变换FMT,两个是一样的,完全没有区别,也就是说DWT(A)[i]其实也是i的所有子集元素和。
举个栗子
,
解决了!
AND卷积
和or很相像
因为是按位与,所以当前位为0的对1没有影响,而1的元素都要对0有影响(1可以&0变成0,但是0怎么&都不会变成1),于是它的DWT就是这样
这样DWT(A)[i]就相当于下标按位与 i 后等于 i 的元素和,转换回去刚好就把当前位为0的减去为1的就行,即
这又刚好是DWT的逆运算了。
再举个栗子
,
XOR卷积
这个就比较特殊了
我们从栗子里会发现,对于异或,我们最后其实要把 a0b0+a1b1 和 a1b0+a0b1 单独刨出来。(这不是废话!)
那么在DWT(C)中,a0b0的系数要和a1b1一样,a1b0的系数要和a0b1一样
……
于是它的DWT就是这样!:
这样DWT(C)就符合条件了,它的IDWT是
这个得看栗子才明白
,
模板
下面是非递归版本的DWT以及IDWT,m为数列长度()
inline void DWTOR(int *s,int m) {
for(int k = m;k > 1;k >>= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j] = qm((s0 +0ll+ s1) , zxy);
}
}
}
return ;
}
inline void IDWTOR(int *s,int m) {
for(int k = 2;k <= m;k <<= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j] = qm((s1 +0ll+ zxy - s0) , zxy);
}
}
}
return ;
}
inline void DWTAND(int *s,int m) {
for(int k = m;k > 1;k >>= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
LL s0 = s[j-(k>>1)],s1 = s[j];
s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy);
}
}
}
return ;
}
inline void IDWTAND(int *s,int m) {
for(int k = 2;k <= m;k <<= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j-(k>>1)] = qm((s0 +0ll+ zxy - s1) , zxy);
}
}
}
return ;
}
inline void DWTXOR(int *s,int m) {
for(int k = m;k > 1;k >>= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j] = qm((s0 +0ll+ zxy - s1) , zxy);
s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy);
}
}
}
return ;
}
inline void IDWTXOR(int *s,int m) {
for(int k = 2;k <= m;k <<= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy) *1ll* inv2 % zxy;
s[j] = qm((s0 +0ll+ zxy - s1) , zxy) *1ll* inv2 % zxy;
}
}
}
return ;
}
FWT就到这里了,大家都懂了吧
FWT快速沃尔什变换——基于朴素数学原理的卷积算法的更多相关文章
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- 浅谈算法——FWT(快速沃尔什变换)
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- 初学FWT(快速沃尔什变换) 一点心得
FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi=j⊕k=i∑Aj∗Bk此处乘号为普通乘法 ...
- FWT快速沃尔什变换例题
模板题 传送门 #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(a):(b)) #de ...
- FWT快速沃尔什变换
前言 学多项式怎么能错过\(FWT\)呢,然而这真是个毒瘤的东西,蒟蒻就只会背公式了\(\%>\_<\%\) 或卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0 ...
- BP神经网络的数学原理及其算法实现
什么是BP网络 BP网络的数学原理 BP网络算法实现 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/44514073 上一篇 ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
随机推荐
- JAVA用for循环打印*三角形
public class Sanjiaoxing { //本节为for循环的嵌套结构练习 public static void main(String[] args) { // TODO Auto-g ...
- vue大型电商项目尚品汇(后台篇)day04
昨天太晚就没来得及更新,今天是spu管理界面,这个界面一共有三个界面需要切换,完成了两个界面,而且今天的难度在于最后两个章节,富有一定的逻辑性,当然中间也有很多需要注意的,比如ElementUI的照片 ...
- SAP Column tree
code as bellow *&---------------------------------------------------------------------* *& I ...
- python删除Android应用及文件夹,就说牛不牛吧
写在前面的一些P话: 碌者劳其心力,懒人使用工具.程序员作为懒人推动社会进步,有目共睹. adb 已提供了开发者可以使用的全部工具,但是重复执行一系列adb命令也令人心烦,所以,如果业务需求固定,直接 ...
- Ansible Playbook概览
Ansible playbook 执行需要三步路执行: 1.编写playbook 2.定义主机清单文件 3.设置运行环境,写入配置文件 1.编写playbook Playbook使用YAML语法格式进 ...
- 基于POM---UI测试框架
为什么会出现这个半自动化UI测试框架 我进入公司的前一个月从事的手工测试,为了提高自己的测试效率在工作时间之外写了一个半自动化的UI测试(害怕手工测试做久了,忘记自己还学过软件开发), 为什么我把它叫 ...
- ubuntu20.04安装测试uhttpd
uhttpd是openwrt上运行一个高效小型Http服务,支持cgi, lua等特性.可以直接通过snap方式安装,如果是16.04,18.04或者20.04,snap已经默认安装了:如果是其它版本 ...
- Java 中的对象池实现
点赞再看,动力无限.Hello world : ) 微信搜「程序猿阿朗 」. 本文 Github.com/niumoo/JavaNotes 和 未读代码博客 已经收录,有很多知识点和系列文章. 最近在 ...
- 边缘计算 KubeEdge+EdgeMash
简介 KubeEdge是面向边缘计算场景.专为边云协同设计的业界首个云原生边缘计算框架,在 Kubernetes 原生的容器编排调度能力之上实现了边云之间的应用协同.资源协同.数据协同和设备协同等能力 ...
- Grid属性太多记不住?【Grid栅格布局可视化编辑器】直观易懂高效,拖拉拽,有手就行!
手把手教你通过拖拉拽可视化的方式带你练习[Grid栅格布局]的各个属性,直观易懂!再也不愁记不住繁多的Grid属性了.整个过程在众触应用平台进行,不用手写一行CSS代码. grid-auto-flow ...