这是我的第一篇学习笔记,如有差错,请海涵...


目录

引子

卷积形式

算法流程

OR卷积

AND卷积

XOR卷积

模板


引子

首先,考虑这是兔子

数一数,会发现你有一只兔子,现在,我再给你一只兔子

再数一数,会发现什么?没错,你有两只兔子,也就是说,1+1=2

这就是算数的基本原理了,聪明的你懂了吗?

好,我们可以学FWT了..


卷积形式

我们回忆一下多项式乘法的式子:

这个可以用FFT或NTT优化到O(nlogn)求出每一个Ci,但不是本章的重点,只是引出卷积的概念:

而FWT主要是解决以下三种卷积形式:


算法流程

卷积的算法原理就是把一个数列快速转换成另一种数列,然后每一位元素之间就可以直接单独相乘计算,最后再把答案数列快速转换回来。

FFT体现这个原理的方式就是把多项式转换成点值表达式,然后由于每个点的横坐标相同,纵坐标直接乘起来就得到最终的点值表达式,最后把答案的多项式表达通过点值表达式解出来。

那FWT怎么做呢?

首先就是数列长度的问题,我们知道,多项式乘法最终会得到一个长为lenA+lenB-1的多项式,而考虑位运算的卷积——很容易想出,最终的数列长度一定是,n是A、B大小转换为二进制后的数的最大位数。

我们设数列A的转换数列是DWT(A),转换后的数列A的原数列是IDWT(A)

既然它是位运算,那么我们就按位分治

我们从二进制最高位考虑起,每次把当前位为0或1的元素分开成两个数列,很显然,由于数列长度为,直接每次从中间分开就好了,

那么

这里的“{  ,  }”是把两个数列前后拼一起,A+B是把两个数列排头对齐,然后每一位相加。

具体的系数a,b,c,d是怎么样,or , and 和 xor 的情况是不一样的。

OR卷积

因为是按位或,所以当前位为1的对0没有影响,而0的元素都要对1有影响(0可以 | 1变成1,但是1怎么 | 都不会变成0),于是它的DWT就是这样

这样DWT(A)[i]就相当于下标按位或 i 后等于 i 的元素和,转换回去刚好就把当前位为1的减去为0的就行,即

这就是DWT的逆运算形式吧。

ps:巧合的是,这个玩意其实也是快速莫比乌斯变换FMT,两个是一样的,完全没有区别,也就是说DWT(A)[i]其实也是i的所有子集元素和。

举个栗子

,

解决了!

AND卷积

和or很相像

因为是按位与,所以当前位为0的对1没有影响,而1的元素都要对0有影响(1可以&0变成0,但是0怎么&都不会变成1),于是它的DWT就是这样

这样DWT(A)[i]就相当于下标按位与 i 后等于 i 的元素和,转换回去刚好就把当前位为0的减去为1的就行,即

这又刚好是DWT的逆运算了。

再举个栗子

,

XOR卷积

这个就比较特殊了

我们从栗子里会发现,对于异或,我们最后其实要把 a0b0+a1b1 和 a1b0+a0b1 单独刨出来。(这不是废话!)

那么在DWT(C)中,a0b0的系数要和a1b1一样,a1b0的系数要和a0b1一样

……

于是它的DWT就是这样!:

这样DWT(C)就符合条件了,它的IDWT是

这个得看栗子才明白

,


模板

下面是非递归版本的DWT以及IDWT,m为数列长度(

inline void DWTOR(int *s,int m) {
for(int k = m;k > 1;k >>= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j] = qm((s0 +0ll+ s1) , zxy);
}
}
}
return ;
}
inline void IDWTOR(int *s,int m) {
for(int k = 2;k <= m;k <<= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j] = qm((s1 +0ll+ zxy - s0) , zxy);
}
}
}
return ;
} inline void DWTAND(int *s,int m) {
for(int k = m;k > 1;k >>= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
LL s0 = s[j-(k>>1)],s1 = s[j];
s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy);
}
}
}
return ;
}
inline void IDWTAND(int *s,int m) {
for(int k = 2;k <= m;k <<= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j-(k>>1)] = qm((s0 +0ll+ zxy - s1) , zxy);
}
}
}
return ;
} inline void DWTXOR(int *s,int m) {
for(int k = m;k > 1;k >>= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j] = qm((s0 +0ll+ zxy - s1) , zxy);
s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy);
}
}
}
return ;
}
inline void IDWTXOR(int *s,int m) {
for(int k = 2;k <= m;k <<= 1) {
for(int i = 0;i < m;i += k) {
for(int j = i+(k>>1);j < i+k;j ++) {
int s0 = s[j-(k>>1)],s1 = s[j];
s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy) *1ll* inv2 % zxy;
s[j] = qm((s0 +0ll+ zxy - s1) , zxy) *1ll* inv2 % zxy;
}
}
}
return ;
}

FWT就到这里了,大家都懂了吧

FWT快速沃尔什变换——基于朴素数学原理的卷积算法的更多相关文章

  1. FWT快速沃尔什变换学习笔记

    FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...

  2. [学习笔记]FWT——快速沃尔什变换

    解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...

  3. 浅谈算法——FWT(快速沃尔什变换)

    其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...

  4. 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)

    知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...

  5. 初学FWT(快速沃尔什变换) 一点心得

    FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi​=j⊕k=i∑​Aj​∗Bk​此处乘号为普通乘法 ...

  6. FWT快速沃尔什变换例题

    模板题 传送门 #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(a):(b)) #de ...

  7. FWT快速沃尔什变换

    前言 学多项式怎么能错过\(FWT\)呢,然而这真是个毒瘤的东西,蒟蒻就只会背公式了\(\%>\_<\%\) 或卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0 ...

  8. BP神经网络的数学原理及其算法实现

    什么是BP网络 BP网络的数学原理 BP网络算法实现 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/44514073  上一篇 ...

  9. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

随机推荐

  1. 物联网?快来看 Arduino 上云啦

    作者:HelloGitHub-Anthony 这里是 HelloGitHub 推出的讲解开源硬件开发平台 Arduino 的系列教程. 第一篇:Arduino 介绍和开发环境搭建 第二篇:制作温湿度显 ...

  2. hadoop集群搭建——单节点(伪分布式)

    1. 准备工作: 前提:需要电脑安装VM,且VM上安装一个Linux系统 注意:本人是在学习完尚学堂视频后,结合自己的理解,在这里做的总结.学习的视频是:大数据. 为了区分是在哪一台机器做的操作,eg ...

  3. bat-使用bat安装jdk和配置环境变量

    文件路径 @echo off Setlocal enabledelayedexpansion @REM vscode中自动开启延迟环境变量扩展, %~d0 cd %~dp0 @REM dir echo ...

  4. Python自动化办公:批量将文件按分类保存,文件再多,只需一秒钟解决

    序言 (https://jq.qq.com/?_wv=1027&k=GmeRhIX0) 当我们电脑里面的文本或者或者文件夹太多了,有时候想找到自己想要的文件,只能通过去搜索文件名,要是名字忘记 ...

  5. Java创建TXT文件并写入 内容

    public static void main(String[] args) { String filePath = "E:/" + "1.txt"; Stri ...

  6. Electron学习(三)之简单交互操作

    写在前面 最近一直在做批量测试工具的开发,打包的exe,执行也是一个黑乎乎的dos窗口,真的丑死了,总感觉没个界面,体验不好,所以就想尝试写桌面应用程序. 在技术选型时,Java窗体实现使用JavaF ...

  7. Http实战之Wireshark抓包分析

    Http实战之Wireshark抓包分析 Http相关的文章网上一搜一大把,所以笔者这一系列的文章不会只陈述一些概念,更多的是通过实战(抓包+代码实现)的方式来跟大家讨论Http协议中的各种细节,帮助 ...

  8. APISpace 月出月落和月相API接口 免费好用

     月出和月落的位置,正如地球围绕太阳变化时产生的日出和日落一样,但是也和月相有关.一天中月亮升起的时间取决于它的月相.当你记得月相取决于太阳,月亮和地球的相对位置应该是明显的.月相是指从地球上看月球直 ...

  9. World Tour Finals 2019 D - Distinct Boxes 题解

    太神了,专门写一篇题解 qwq 简要题意:给你 \(R\) 个红球和 \(B\) 个蓝球,你要把它们放到 \(K\) 个箱子里,要求没有两个箱子完全相同(即两种球个数就相同),求 \(K\) 的最大值 ...

  10. 为什么Java有GC调优而没听说过有CLR的GC调优?

    前言 在很多的场合我都遇到过一些群友提这样的一些问题: 为什么Java有GC调优而CLR没有听说过有GC调优呢? 到底是Java的JVM GC比较强还是C#使用的.NET CLR的GC比较强呢? 其实 ...