[AGC057D] Sum Avoidance
本篇题解大部分内容来自这篇文章
首先题意翻译:
给定一个正整数 \(S\) ,称一个正整数集合 \(A\) 是好的,当且仅当它满足以下条件:
\(A\) 中元素在 \((0,S)\) 之间
不能用 \(A\) 中元素多次相加得到 \(S\)
考虑所有好的集合中元素数量最大且字典序最小的集合 \(A\) ,多次询问,求集合 \(A\) 从小到大排序后的第 \(k\) 项,或集合大小小于 \(k\)
$ T \le 1000 , S \le 10^{18} $
解法
这什么神仙题啊光是理解题解就好困难啊
先考虑性质2:
首先容易发现 \(i,S-i\) 只能在集合中存在一个,若 \(S\) 为偶数则 \(\frac{S}{2}\) 也不能存在于集合中,所以集合的大小小于等于\(\left\lfloor\dfrac{S-1}{2}\right\rfloor\)。
其次,把所有大于 \(\left\lfloor\dfrac{S}{2}\right\rfloor\) 的整数取进集合必然满足条件,所以最大集合的大小一定为\(\left\lfloor\dfrac{S-1}{2}\right\rfloor\)。
且若要满足集合大小最大,对于 \(i< \dfrac{S}{2}\),\(n-i\) 和 \(i\) 一定有一个在集合中。
我们设所有集合 \(A\) 中 \(< \dfrac{S}{2}\)的元素构成集合 \(B\),显然 \(B\) 是 \(A\) 的子集,且确定 \(B\) 即可确定 \(A\)。
则 \(B\) 有以下性质:
\]
原因是如果 \(a+b \notin B\),则 \(n-(a+b)\),一定在 \(A\)中,那么 \(a,b,n-(a+b)\) 同时在集合 \(A\) 中,显然不满足条件。
考虑满足该性质的集合 \(B\) 及对应的 \(A\),当它不合法,即 \(A\) 中的数多次相加能拼成 \(S\) 时,若拼成 \(S\) 的数中有一个大于等于 \(\dfrac{S}{2}\)(即在集合 \(A\) 但不在集合 \(B\) 中) ,则这种情况必定不满足性质1,所以我们只需要考虑集合 \(B\) 是否合法即可。
那么接下来就是构造了,由于我们要构造字典序最小的 \(A\) ,所以只需从小往大依次枚举每个数,尝试贪心的将其加入 \(B\) ,最后得到的 \(B\) 及其对应的 \(A\) 就是我们所需要的集合 \(A\) 了。
加入数时有两种情况:
1.该数能被已经在 \(B\) 中的数组合出,那么这个数必须加,显然加入它之后集合仍旧合法。
2.当非第一种情况时,若加入该数不会使集合 \(B\) 不合法,加入该数。
我们设第一个加入集合 \(B\) 的数为 \(d\) ,容易发现,\(d\) 一定是最小的与 \(S\) 互质的数,并且在此之后每当我们用第 \(2\) 种方式加入新数时,该数一定与已经在集合中的所有数模 \(d\) 不同余(同余的话可以由已经在集合中的同余的数和若干个 \(d\) 组合出)。也就是说,以第二种方式加入的数最多只有 \(d\) 个。
接下来就来到了同余最短路的相关部分,考虑对于每个 \(i\in{0,1,···,d-1}\) 记录一个 \(f_i\) 表示已经在 \(B\) 的数可以构造出的 \(\equiv i (\mod d )\)的最小值。
显然,\(f\) 不会被第一种情况加入的数影响,且最后由 \(f\) 可以得到整个 \(B\) 集合(下文讲具体方法)。
先考虑以第二种方式加入一个数 \(v \equiv x (\mod d)\),首先一定有 \(f_x>v\) (否则就是以第一种方式加入了),可以通过枚举加入的 \(v\) 用了多少次更新 \(f\) 数组,即:
\]
一个数\(v\)能被加入当且仅当 \(f_x>v\) 且加入后 \(f_{S \mod d}>S\)。我们不妨枚举 \(x\),容易发现,对于每个 \(x\) ,加入的合法的 \(v\) 有其下界 \(dn\) ,大于等于 \(dn\) 且 \(\equiv x(\mod d)\) 且小于 \(f_x\) 的数均可加入,从而可以得到当前 \(x\) 下第一个能加入的数。(当然也可能根本不存在能加入的数)
于是我们可以对每一个 \(x\) 找到其能加的数,取其中最小的就是下一个能加的数,重复至多 \(d\) 次即可得到最终的 \(f\) 数组。
接下来就可以还原 \(B\) 了,若一个数 \(t\in B\),当且仅当 \(t < \frac{S}{2}\) 且 \(t\ge f_{t \mod d}\)。
此时容易\(O(d)\)求得 \(B\) 集合内小于等于某个数的元素个数,于是可以二分求得最终答案。复杂度为 \(O(d \log S)\),若答案\(> \frac{S}{2}\),也可以反向类似二分。
考虑 \(d\) 的范围,容易发现 \(d\) 在 \(10^{18}\) 次以内最大为 \(43\) (\(lcm(1,2,···,43)\geq 10^{18}\))。而事实上,\(d=O(\log S)\)
点击查看代码
#include <bits/stdc++.h>
#define N 50
#define M 2000010
#define pii pair<int,int>
#define mkp make_pair
#define pb push_back
#define fi first
#define se second
#define int long long
//#define MOD
#define INF 1061109567
#define int_edge int to[M],nxt[M],head[N],cnt=0;
using namespace std;
int S,k,d,f[N],in[N];
//int_edge;void add_edge(int x,int y ){to[++cnt]=y;nxt[cnt]=head[x];head[x]=cnt;}
//int_edge;int val[M];void add_edge(int x,int y,int z){to[++cnt]=y;val[cnt]=z;nxt[cnt]=head[x];head[x]=cnt;}
int check(int nw){
	int tmp=0;
	for(int i=0;i<d;i++)
		if(nw>=f[i])tmp+=(nw-f[i])/d+1;
	return tmp;
}
queue<int>q;
void spfa(int nw){
	for(int i=0;i<d;i++)q.push(i),in[i]=1;
	while(!q.empty()){
		int u=q.front(),v=(u+nw)%d;q.pop();in[u]=0;
		if(f[v]>f[u]+nw){f[v]=f[u]+nw;if(!in[v])q.push(v),in[v]=1;}
	}
}
int solve(){
	scanf("%lld %lld",&S,&k);
	if(k>(S-1)/2)return -1;
	if(S==3)return 2;
	if(S==4)return 3;
	if(S==6)return k+3;//d>=S/2
	d=1;while(S%d==0)d++;
	for(int i=1;i<d;i++)f[i]=1e18;
	while(1){
		int v=1e18;
		for(int x=1;x<d;x++){//枚举x,容易发现x肯定不是0
			int dn=0;
			for(int k=1;k<d;k++){//枚举k,容易发现k取0肯定也不优
				int lst=(S-x*k+d*d)%d;//加上d*d用于防负数
				dn=max(dn,(S-f[lst])/k+1);
			}
			if((dn+d-x)%d)dn+=d-(dn+d-x)%d;//确保算出来的下界mod d = x
			if(dn<f[x]&&dn<v)v=dn;
		}
		if(v>=S/2)break;
		spfa(v);//更新f
	}
	int l=1,r=S/2,ans=-1;
	while(l<=r){
		int mid=(l+r)/2;
		if(check(mid)>=k+1)ans=mid,r=mid-1;//注意此处由于算入了0所以要与k+1相比
			else l=mid+1;
	}
	if(ans!=-1)return ans;
	l=1,r=S/2,k=(S-1)/2+1-k;
	while(l<=r){
		int mid=(l+r)/2;
		if(mid-check(mid)+2>=k+1)ans=mid,r=mid-1;//同样是由于算0
			else l=mid+1;
	}
	return S-ans;
}
signed main()
{
	int T;scanf("%lld",&T);
	while(T--)printf("%lld\n",solve());
	return 0;
}
后记:这个题折磨了我半个下午加半个晚上,不过也算是迄今为止做过的最难的题之一了,还是很有收获的。以及我真的很想吐槽一下,我函数里重复定义了 \(d\) 调了快1个小时
[AGC057D] Sum Avoidance的更多相关文章
- LeetCode - Two Sum
		
Two Sum 題目連結 官網題目說明: 解法: 從給定的一組值內找出第一組兩數相加剛好等於給定的目標值,暴力解很簡單(只會這樣= =),兩個迴圈,只要找到相加的值就跳出. /// <summa ...
 - Leetcode 笔记 113 - Path Sum II
		
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
 - Leetcode 笔记 112 - Path Sum
		
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
 - POJ 2739. Sum of Consecutive Prime Numbers
		
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
 - BZOJ 3944 Sum
		
题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...
 - [LeetCode] Path Sum III 二叉树的路径和之三
		
You are given a binary tree in which each node contains an integer value. Find the number of paths t ...
 - [LeetCode] Partition Equal Subset Sum 相同子集和分割
		
Given a non-empty array containing only positive integers, find if the array can be partitioned into ...
 - [LeetCode] Split Array Largest Sum 分割数组的最大值
		
Given an array which consists of non-negative integers and an integer m, you can split the array int ...
 - [LeetCode] Sum of Left Leaves 左子叶之和
		
Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...
 
随机推荐
- RabbitMQ 入门系列:5、基础编码:交换机的进阶介绍及编码方式。
			
系列目录 RabbitMQ 入门系列:1.MQ的应用场景的选择与RabbitMQ安装. RabbitMQ 入门系列:2.基础含义:链接.通道.队列.交换机. RabbitMQ 入门系列:3.基础含义: ...
 - ARC125E - Snack (网络流)
			
题面 有 N N N 种糖果, M M M 个小孩子,第 i i i 种糖果有 A i A_i Ai 个,第 i i i 个孩子不能有超过 B i B_i Bi 个同种类型的糖果,第 i i i ...
 - Java-随机数据生成器(造数据)
			
概述 简单易用的随机数据生成器.一般用于开发和测试阶段的数据填充.模拟.仿真研究.演示等场景.可以集成到各种类型的java项目中使用. 优点 非常轻量级(不到1M),容易集成,无需过多第三方依赖 简单 ...
 - 【设计模式】Java设计模式 - 动态代理
			
[设计模式]Java设计模式 - 动态代理 不断学习才是王道 继续踏上学习之路,学之分享笔记 总有一天我也能像各位大佬一样 一个有梦有戏的人 @怒放吧德德 最近工作比较忙,没啥时间学习 目录 [设计模 ...
 - bulk collect 在KingbaseES和Oracle的使用方法比较
			
概述 BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎.通常可以在SELECT INTO.FETCH INTO以及RETURNI ...
 - kubernetes之基于ServiceAccount拉取私有镜像
			
前面可以通过ImagPullPolicy和ImageullSecrets指定下载镜像的策略,ServiceAccount也可以基于spec.imagePullSecret字段附带一个由下载镜像专用的S ...
 - 聊聊asp.net core 授权流程
			
在上一篇 聊聊 asp.net core 认证和授权 中我们提到了认证和授权的基本概念,以及认证和授权的关系及他们之间的协同工作流程,在这篇文章中,我将通过分析asp.net core 3.1 授权流 ...
 - Elasticsearch: rollover API
			
rollover使您可以根据索引大小,文档数或使用期限自动过渡到新索引. 当rollover触发后,将创建新索引,写别名(write alias)将更新为指向新索引,所有后续更新都将写入新索引. 对于 ...
 - 安装ceph (快速) 步骤二:存储集群
			
用 ceph-deploy 从管理节点建立一个 Ceph 存储集群,该集群包含三个节点,以此探索 Ceph 的功能. 创建一个 Ceph 存储集群,它有一个 Monitor 和两个 OSD 守护进程. ...
 - 第六章:Django 综合篇 - 6:会话session
			
因为因特网HTTP协议的特性,每一次来自于用户浏览器的请求(request)都是无状态的.独立的.通俗地说,就是无法保存用户状态,后台服务器根本就不知道当前请求和以前及以后请求是否来自同一用户.对于静 ...