接下来是图论问题求解最短路问题的最后一个,求解多元汇最短路问题

我们之前一般都是问1-n的最短路径,这里我们要能随便去问i到j的最短路径:

这里介绍一下Floyd算法:我们只有一个d[maxn][maxn]数组直接存储从i到j的最短路径,我们先看代码:

#include<bits/stdc++.h>
#define maxn 210
#define INF 1000000000

using namespace std;
int d[maxn][maxn],n,m,q;

void floyd()
{
for(int k = 1;k<=n;k++)
for(int i = 1;i<=n;i++)
for(int j = 1;j<=n;j++)
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
}

int main()
{
cin >> n >> m >> q;
for(int i = 1;i<=n;i++)
for(int j = 1;j<=n;j++)
if(i==j) d[i][j] = 0;
else d[i][j] = INF;

while(m--){
int x,y,z;
cin >> x >> y >> z;
d[x][y] = min(d[x][y],z);
}
floyd();
while(q--){
int x,y;
cin >> x >> y;
if(d[x][y] > INF/2) cout << "impossible" << '\n';
else cout << d[x][y] << '\n';
}
return 0;
}

分析:·首先,我们可以看到我们先对d数组进行初始化,使自环为0,其他取INF;

·然后我们读入每条边的数值,我们就要取最小值。是两条直接相连边的边权值最小;

·最后我们直接套三重循环,如下理解:

f[i, j, k]表示从i走到j的路径上除i和j点外只经过1到k的点的所有路径的最短距离。那么f[i, j, k] = min(f[i, j, k - 1), f[i, k, k - 1] + f[k, j, k - 1]。
因此在计算第k层的f[i, j]的时候必须先将第k - 1层的所有状态计算出来,所以需要把k放在最外层

Floyd算法 解决多元汇最短路问题的更多相关文章

  1. Floyd算法解决多源最短路问题

    说好的写dijkstra 算法堆优化版本的,但是因为,妹子需要,我还是先把Floyd算法写一下吧!啦啦啦! 咳咳,还是说正事吧! ----------------------------------- ...

  2. Floyd算法解决多源最短路径问题

    Floyd-Warshall算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. Floyd-Warshall算法 ...

  3. dijkstra算法解决单源最短路问题

    简介 最近这段时间刚好做了最短路问题的算法报告,因此对dijkstra算法也有了更深的理解,下面和大家分享一下我的学习过程. 前言 呃呃呃,听起来也没那么难,其实,真的没那么难,只要弄清楚思路就很容易 ...

  4. Bellman-Ford算法解决单源最短路问题

    #include<stdio.h> #include<stdlib.h> #include<stdbool.h> #define max 100 #define I ...

  5. Floyd算法解决最短路径问题

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的中午,A和B在吃过中饭之后,来到了一个新的鬼屋!鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些 ...

  6. [总结]Floyd算法及其应用

    目录 一.Floyd算法 二.Floyd算法的应用 1. 传递闭包 例1:P2881 [USACO07MAR]排名的牛Ranking the Cows 例2:P2419 [USACO08JAN]牛大赛 ...

  7. 多源最短路径,一文搞懂Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  8. 最短路问题(floyd算法)(优化待续)

    问题描述: 最短路问题(short-path problem):若网络中的每条边都有一个数值(长度.成本.时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题.最短路问题是 ...

  9. 四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)

    什么是最短路径问题? 简单来讲,就是用于计算一个节点到其他所有节点的最短路径. 单源最短路算法:已知起点,求到达其他点的最短路径. 常用算法:Dijkstra算法.Bellman-ford算法.SPF ...

随机推荐

  1. android TextView属性详解

    RelativeLayout用到的一些重要的属性: 第一类:属性值为true或false     android:layout_centerHrizontal  水平居中      android:l ...

  2. python篇第5天【变量】

    第4天加班 多个变量赋值 Python允许你同时为多个变量赋值.例如: a = b = c = 1 以上实例,创建一个整型对象,值为1,三个变量被分配到相同的内存空间上. 您也可以为多个对象指定多个变 ...

  3. NOIP2021T1报数——黄蓝紫黑的神奇梯度

    7A3T 点击查看代码 #include<iostream> #include<cstdio> #include<cmath> #include<algori ...

  4. PHP和MySQL爱考的10道题

    PHP和MySQL爱考的10道题 来自<PHP程序员面试笔试宝典>,涵盖了近三年了各大型企业常考的PHP面试题,针对面试题提取出来各种面试知识也涵盖在了本书. 一.如何进行数据库优化? 数 ...

  5. Solution Set - Border Theory

      我发现写 Solution Set 就不用写每道题的题意了,岂不美哉?   首先是一些奇妙结论.   定理 1(弱周期定理) 对于字符串 \(S\),若 \(S[:p]\) 和 \(S[:q]\) ...

  6. Solution -「AGC 004E」「AT 2045」Salvage Robots

    \(\mathcal{Description}\)   Link.   有一个 \(n\times m\) 的网格.每个格子要么是空的,要么有一个机器人,要么是一个出口(仅有一个).每次可以命令所有机 ...

  7. 【基础篇】js对本地文件增删改查--查

    前置条件: 1. 本地有安装node,点击传送门 项目目录: 1. msg.json内容 { "data": [ { "id": 1, "name&q ...

  8. k8s容器拷贝文件到本地、本地文件拷贝到k8s容器

    k8s容器拷贝文件到本地 kubectl cp qzcsbj/order-b477c8947-tr8rz:/tmp/jstack.txt /root/test/jstack.txt 本地文件拷贝到k8 ...

  9. Oracle 添加用户并赋权,修改密码,解锁,删除用户的方法

    转至:https://www.jb51.net/article/20367.htm 添加用户(随着用户的创建,自动产生与用户同名的schema) CREATE USER "TESTER&qu ...

  10. POJ1990 题解

    题目大意:有若干头牛,每个牛有一个音量值,两头牛能互相听见对方说话需要发出两头牛中音量值较大者的音量*两头牛的距离的音量,求使任意两头牛都互相听见对方需要发出的音量总和.每头牛的音量值可以相同,但坐标 ...