题意很简单,就是让你求这个东西,这个时候你发现,原题????

https://blog.csdn.net/acdreamers/article/details/23039571

哦,只是原来写过的哪一题的C是1,这个是1e18. 想都不用想,直接二项式展开,求等比数列的前n项和。

你会得到第i项(一共k项):

这个时候理所当然的想先用二次剩余求出来那几个用到的东西,a,b,1/sqrt(5)。

1你用快速幂求了一下,一交,tle了。

2 然后发现每个都求快速幂太蠢了,所以又优化优化,优化到除了求分母的逆元需要用到快速幂其他的都可以由上一项推出来,然后再交,又wa了。

3 哦,原来这是等比数列,分母是1-q,如果q是1那不就错了吗?所以特判一下如果q是1,加的就是n*a1,a1是几?你看这个Sn,忽略这个组合数,a1不就和q完全相等吗,是1! 就这样a了。

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define met(a, b) memset(a, b, sizeof(a))
#define rep(i, a, b) for(int i = a; i <= b; i++)
#define bep(i, a, b) for(int i = a; i >= b; i--)
#define pb push_back
#define mp make_pair
#define debug cout << "KKK" << endl
#define ls num*2
#define rs num*2+1
#define re return
using namespace std;
const ll mod = 1e9 + 9;
const double PI = acos(-1);
const ll INF = 2e18+1;
const int inf = 1e9+5;
const double eps = 1e-7;
const int maxn = 1e5 + 5;
// 逆元
// sqrt(5) = 383008016;
// a = (1+sqrt(5))/2 = 691504013;
// b = (1-sqrt(5))/2 = 308495997;
// 1/sqrt(5) = 276601605;
ll A = 691504013, B = 308495997;
ll sqrt5 = 383008016, invsqrt5 = 276601605;
ll qsm(ll a, ll n){
ll res = a%mod, sum = 1;
while(n){
if(n&1) sum = (sum*res)%mod;
res = (res*res)%mod;
n >>= 1;
}
return sum;
} ll fac[maxn], f[maxn], inv[maxn];
ll C(ll m, ll n){
if(m < n) return 0;
if(n == 0 || m == n) return 1;
return fac[m]*inv[n]%mod*inv[m-n]%mod;
}
void init(){
fac[1] = 1;
f[1] = 1;
inv[1] = 1;
for(ll i = 2; i <= 100000; i++){
fac[i] = fac[i-1]*i%mod;
f[i] = (mod - mod/i)*f[mod%i]%mod;
inv[i] = inv[i-1]*f[i]%mod;
}
} ll sac[maxn], sbc[maxn];
int main(){
// ios::sync_with_stdio(false);
// cin.tie(0); cout.tie(0);
init();
int t; scanf("%d", &t);
while(t--){
ll n, c, k;
scanf("%lld%lld%lld", &n,&c,&k);
// n = 1e18, c = 1e18, k = 1e5;
ll res = qsm(invsqrt5, k);
ll ans = 0, flag = -1;
ll x, y;
ll ac = qsm(A, c), bc = qsm(B, c);
sac[0] = 1, sbc[0] = 1;
sac[1] = ac, sbc[1] = bc;
rep(i, 1, k){
sac[i] = sac[i-1]*ac%mod;
sbc[i] = sbc[i-1]*bc%mod;
}
ll acn = qsm(qsm(A, c), n);
ll bcn = qsm(qsm(B, c), n);
ll invacn = qsm(acn, mod-2);
ll invbcn = qsm(bcn, mod-2);
ll now_acn = qsm(acn, k), now_bcn = 1;
for(ll i = 0; i <= k; i++){
flag *= -1;
ll q = sac[k-i] * sbc[i] % mod;
if(q == 1){
q = (n%mod)*C(k, i) % mod;
ans = (ans + flag*q%mod + mod) % mod;
}
else{
x = (C(k, i)*sac[k-i]%mod) * sbc[i] % mod;
x = (1-(now_acn * now_bcn % mod) + mod) % mod * x % mod;
y = (1 - (sac[k-i] * sbc[i])%mod ) % mod;
y = qsm(y, mod-2);
ans = (ans + flag*x*y%mod + mod)%mod;
}
now_acn = (now_acn * invacn) % mod;
now_bcn = (now_bcn * bcn) % mod;
}
cout << ans*res%mod << endl;
}
return 0;
}

2020 Multi-University Training Contest 1 . Fibonacci Sum 水题改编的更多相关文章

  1. codeforces 577B B. Modulo Sum(水题)

    题目链接: B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. 入门训练 Fibonacci数列 (水题)

    入门训练 Fibonacci数列   时间限制:1.0s   内存限制:256.0MB        问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n ...

  3. SPOJ 3693 Maximum Sum(水题,记录区间第一大和第二大数)

    #include <iostream> #include <stdio.h> #include <algorithm> #define lson rt<< ...

  4. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem J. Joke 水题

    Problem J. Joke 题目连接: http://codeforces.com/gym/100714 Description The problem is to cut the largest ...

  5. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem H. Hometask 水题

    Problem H. Hometask 题目连接: http://codeforces.com/gym/100714 Description Kolya is still trying to pass ...

  6. 2017 Multi-University Training Contest - Team 3 Kanade's sum hd6058

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6058 题目: Kanade's sum Time Limit: 4000/2000 MS (J ...

  7. 2015 Multi-University Training Contest 8 hdu 5381 The sum of gcd

    The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  8. HDU 6058 - Kanade's sum | 2017 Multi-University Training Contest 3

    /* HDU 6058 - Kanade's sum [ 思维,链表 ] | 2017 Multi-University Training Contest 3 题意: 给出排列 a[N],求所有区间的 ...

  9. 2020 Multi-University Training Contest 1 部分题解

    目录 Cookies Distinct Sub-palindromes Fibonacci Sum Finding a MEX Leading Robots Math is Simple Minimu ...

  10. HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)

    Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

随机推荐

  1. TypeScript 合并以及删除数组数据

    1.添加 concat() 2.删除(替换) splice() array.splice(index,int,any) index 是 array数组起始位置的index(从0开始) int是操作从i ...

  2. 基于rabbitmq之MQTT协议的智能家居

    智能家居项目 智能可燃气体报警器 产品是一款可燃气体报警器,如果家中燃气泄露浓度到达一定阈值,报警器检测到并上传气体浓度值给后台,后台以电话.短信.微信等方式,提醒用户家中可能有气体泄漏. 用户还可能 ...

  3. 第三课 Hello World显示

    HelloWorld 1.新建文件件 2.新建java文件 3.编写代码 public class Hello{ public static void main(String[] args){ Sys ...

  4. Kafka的启动 并创建topic

    一.进入到kafka的bin目录下,运行 ./kafka-server-start.sh -daemon /app/kafka/config/server.properties 注意:如果是0.9版本 ...

  5. JDK1.8下载、安装和环境配置教程——

    JDK1.8下载.安装和环境配置教程 1.下载安装包 - 浏览器搜索JDK8,如下图: - 点击网页打开后,下拉找到这个: - 根据自己的系统选择正确的进行下载: 例如我的是windows 64位,我 ...

  6. jquery 判断字符串长度

    function titleLength(str) { var strLength = 0; var list = str.split(""); for (var i = 0; i ...

  7. Jetpack compose学习笔记之ConstraintLayout(布局)

    一,简介 Jetpack compose中没有提供ConstraintLayout支持,所以需要添加下面的依赖来导入. // build.gradle implementation "and ...

  8. excel的几个常用方法

    --笔记开始: 1.if(条件,真值,假值),类似于编程语言中的三元运算符.条件为真时返回真值,条件为假时返回假值. 2.match(目标值,查找区域,查找类型),一般查找类型为0(等值查找),查找区 ...

  9. C和C++内存分配语法补充

    NOTE: 动态内存分配:需要加载头文件<stdlib.h>malloc(m):开辟m字节长度的地址空间,并返回首地址sizeof(x):计算变量x的长度free(p):释放指针p所指的存 ...

  10. GVINS文章暴力翻译(仅供自学)

    https://blog.csdn.net/haner27/article/details/117929327