题意很简单,就是让你求这个东西,这个时候你发现,原题????

https://blog.csdn.net/acdreamers/article/details/23039571

哦,只是原来写过的哪一题的C是1,这个是1e18. 想都不用想,直接二项式展开,求等比数列的前n项和。

你会得到第i项(一共k项):

这个时候理所当然的想先用二次剩余求出来那几个用到的东西,a,b,1/sqrt(5)。

1你用快速幂求了一下,一交,tle了。

2 然后发现每个都求快速幂太蠢了,所以又优化优化,优化到除了求分母的逆元需要用到快速幂其他的都可以由上一项推出来,然后再交,又wa了。

3 哦,原来这是等比数列,分母是1-q,如果q是1那不就错了吗?所以特判一下如果q是1,加的就是n*a1,a1是几?你看这个Sn,忽略这个组合数,a1不就和q完全相等吗,是1! 就这样a了。

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define met(a, b) memset(a, b, sizeof(a))
#define rep(i, a, b) for(int i = a; i <= b; i++)
#define bep(i, a, b) for(int i = a; i >= b; i--)
#define pb push_back
#define mp make_pair
#define debug cout << "KKK" << endl
#define ls num*2
#define rs num*2+1
#define re return
using namespace std;
const ll mod = 1e9 + 9;
const double PI = acos(-1);
const ll INF = 2e18+1;
const int inf = 1e9+5;
const double eps = 1e-7;
const int maxn = 1e5 + 5;
// 逆元
// sqrt(5) = 383008016;
// a = (1+sqrt(5))/2 = 691504013;
// b = (1-sqrt(5))/2 = 308495997;
// 1/sqrt(5) = 276601605;
ll A = 691504013, B = 308495997;
ll sqrt5 = 383008016, invsqrt5 = 276601605;
ll qsm(ll a, ll n){
ll res = a%mod, sum = 1;
while(n){
if(n&1) sum = (sum*res)%mod;
res = (res*res)%mod;
n >>= 1;
}
return sum;
} ll fac[maxn], f[maxn], inv[maxn];
ll C(ll m, ll n){
if(m < n) return 0;
if(n == 0 || m == n) return 1;
return fac[m]*inv[n]%mod*inv[m-n]%mod;
}
void init(){
fac[1] = 1;
f[1] = 1;
inv[1] = 1;
for(ll i = 2; i <= 100000; i++){
fac[i] = fac[i-1]*i%mod;
f[i] = (mod - mod/i)*f[mod%i]%mod;
inv[i] = inv[i-1]*f[i]%mod;
}
} ll sac[maxn], sbc[maxn];
int main(){
// ios::sync_with_stdio(false);
// cin.tie(0); cout.tie(0);
init();
int t; scanf("%d", &t);
while(t--){
ll n, c, k;
scanf("%lld%lld%lld", &n,&c,&k);
// n = 1e18, c = 1e18, k = 1e5;
ll res = qsm(invsqrt5, k);
ll ans = 0, flag = -1;
ll x, y;
ll ac = qsm(A, c), bc = qsm(B, c);
sac[0] = 1, sbc[0] = 1;
sac[1] = ac, sbc[1] = bc;
rep(i, 1, k){
sac[i] = sac[i-1]*ac%mod;
sbc[i] = sbc[i-1]*bc%mod;
}
ll acn = qsm(qsm(A, c), n);
ll bcn = qsm(qsm(B, c), n);
ll invacn = qsm(acn, mod-2);
ll invbcn = qsm(bcn, mod-2);
ll now_acn = qsm(acn, k), now_bcn = 1;
for(ll i = 0; i <= k; i++){
flag *= -1;
ll q = sac[k-i] * sbc[i] % mod;
if(q == 1){
q = (n%mod)*C(k, i) % mod;
ans = (ans + flag*q%mod + mod) % mod;
}
else{
x = (C(k, i)*sac[k-i]%mod) * sbc[i] % mod;
x = (1-(now_acn * now_bcn % mod) + mod) % mod * x % mod;
y = (1 - (sac[k-i] * sbc[i])%mod ) % mod;
y = qsm(y, mod-2);
ans = (ans + flag*x*y%mod + mod)%mod;
}
now_acn = (now_acn * invacn) % mod;
now_bcn = (now_bcn * bcn) % mod;
}
cout << ans*res%mod << endl;
}
return 0;
}

2020 Multi-University Training Contest 1 . Fibonacci Sum 水题改编的更多相关文章

  1. codeforces 577B B. Modulo Sum(水题)

    题目链接: B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. 入门训练 Fibonacci数列 (水题)

    入门训练 Fibonacci数列   时间限制:1.0s   内存限制:256.0MB        问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n ...

  3. SPOJ 3693 Maximum Sum(水题,记录区间第一大和第二大数)

    #include <iostream> #include <stdio.h> #include <algorithm> #define lson rt<< ...

  4. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem J. Joke 水题

    Problem J. Joke 题目连接: http://codeforces.com/gym/100714 Description The problem is to cut the largest ...

  5. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem H. Hometask 水题

    Problem H. Hometask 题目连接: http://codeforces.com/gym/100714 Description Kolya is still trying to pass ...

  6. 2017 Multi-University Training Contest - Team 3 Kanade's sum hd6058

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6058 题目: Kanade's sum Time Limit: 4000/2000 MS (J ...

  7. 2015 Multi-University Training Contest 8 hdu 5381 The sum of gcd

    The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  8. HDU 6058 - Kanade's sum | 2017 Multi-University Training Contest 3

    /* HDU 6058 - Kanade's sum [ 思维,链表 ] | 2017 Multi-University Training Contest 3 题意: 给出排列 a[N],求所有区间的 ...

  9. 2020 Multi-University Training Contest 1 部分题解

    目录 Cookies Distinct Sub-palindromes Fibonacci Sum Finding a MEX Leading Robots Math is Simple Minimu ...

  10. HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)

    Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

随机推荐

  1. G6-Editor 编辑器入门使用教程

    一.前言 G6-Editor 是 AntV 官方提供的.专注于图可视化编辑器的类库,也是市面上完成度较高的图可视化编辑器.然而令人诟病的是其文档对新手极度不友好,我一度怀疑此文档只有他们自己开发人员才 ...

  2. CSS3-transform缩放

    缩放:transform:scale(倍数); 实现hover的时候加载播放图标,具体效果如下: 首先需要创建一个大盒子,盒子上面部分用一个div来呈放图片,下面部分直接书写文字.观察发现播放图标是存 ...

  3. Simple Algebra

    题意 给定方程\(f(x)=ax^2+bxy+cy^2\)和参数\(a\),\(b\),\(c\),试确定该方程的取值是否恒非负. 题解 参照文章http://math.mit.edu/~mckern ...

  4. 服务器 安装docker (启动坑了很久才成功)docker-compose

    安装docker: 1.Docker要求CentOS系统的内核版本高于 3.10 ,    通过 uname -r 命令查看你当前的内核版本是否支持安账docker 2.更新yum包: sudo yu ...

  5. MongoDB 分片模式

    Sharding (分片模式) 副本集可以解决主节点发生故障导致数据丢失或不可用的问题,但遇到需要存储海量数据的情况时,副本集机制就束手无策了.副本集中的一台机器可能不足以存储数据,或者说集群不足以提 ...

  6. 解决:pytesseract.pytesseract.TesseractNotFoundError: tesseract is not installed or it‘s not in your PATH. See README file for more information.

    问题:使用pytesseract库识别图片中文字时出现报错 代码: import pytesseract from PIL import Image,ImageEnhance img=Image.op ...

  7. e.target和this区别

    首先,this是指向当前事件所绑定的元素 e.target指向事件执行时所点击区域的元素, 易混淆点,当鼠标所点击的元素有子元素,e.target指向子元素,若没有,则和this一样指向事件所绑定的事 ...

  8. error: You must be logged in to the server (Unauthorized) 问题处理

    故障现象: 执行kubectl 命令时: 提示"error: You must be logged in to the server (Unauthorized)" 分析: 权限问 ...

  9. IDEA中maven项目右侧maven图标不见了

    右侧maven图标没有了 解决方法:双击shift(或者点击help-->Find Action) 打开搜索功能 ---> 搜素Maven Project--->选择Add Mave ...

  10. PageHeplper使用

    1.引入POM 1 <dependency> 2 <groupId>com.github.pagehelper</groupId> 3 <artifactId ...