51nod 简单的动态规划
第1行:字符串A
第2行:字符串B
(A,B的长度 <= 1000)
输出最长的子序列,如果有多个,随意输出1个。
abcicba
abdkscab
abca
状态转移方程为dp[i][j] = a[i]==a[j]?dp[i-1][j-1]+1:max(dp[i-1][j],dp[i][j-1]),然后用dfs搜索回去
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; char a[];
char b[];
int dp[][];
int pre[][]; void dfs(int m,int n)
{
if(m==||n==)
return;
if(pre[m][n]==)
{
dfs(m-,n-);
cout<<a[m];
}
else if(pre[m][n]==)
{
dfs(m-,n);
}
else
{
dfs(m,n-);
}
}
int main()
{
int i,j,len1,len2;
//memset(dp,0,sizeof(dp));
//memset(pre,0,sizeof(pre)); cin>>a+>>b+; len1=strlen(a+);
len2=strlen(b+); for(i=;i<=len1;i++)
{
for(j=;j<=len2;j++)
{
if(a[i]==b[j])
{
dp[i][j]=dp[i-][j-]+;
pre[i][j]=;
}
else
{
if(dp[i-][j]>dp[i][j-])
{
dp[i][j]=dp[i-][j];
pre[i][j]=;
}
else
{
dp[i][j]=dp[i][j-];
pre[i][j]=;
}
}
}
}
dfs(len1,len2);
cout<<endl;
return ;
}
第1行:1个数N,N为序列的长度(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9)
输出最长递增子序列的长度。
8
5
1
6
8
2
4
5
10
5
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn = 1E4 * + ;
int a[maxn],stk[maxn];
int main(){
int n;
scanf("%d",&n);
for(int i = ; i <= n ; ++i){
scanf("%d",&a[i]);
}
int pcur = ;
for(int i = ;i <= n;++i){
if(!pcur){
stk[pcur++] = a[i];
}else {
if(a[i] > stk[pcur - ]){
stk[pcur++] = a[i];
}else if(a[i] < stk[pcur - ]){
int pos = lower_bound(stk,stk + pcur,a[i]) - stk;
stk[pos] = a[i];
}
}
}
printf("%d\n",pcur);
return ;
}
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
输出可以容纳的最大价值。
3 6
2 5
3 8
4 9
14
状态转移
dp[MAXN][10000] 表示前i个物品空间为v的价值
状态转移的方程有放和不放两种,可得:
dp[i][m] = max(dp[i-1][m]__不放,dp[i-1][m-w[i]]+v[i])
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN =;
/*
状态转移
dp[MAXN][10000] 表示前i个物品空间为v的价值
状态转移的方程有放和不放两种,可得:
dp[i][m] = max(dp[i-1][m]__不放,dp[i-1][m-w[i]]+v[i])
*/
int dp[MAXN][];
int w[MAXN],v[MAXN];
int main()
{
int n,maxw,max_all=-;
scanf("%d%d",&n,&maxw);
for(int i=;i<n;i++)
{
scanf("%d%d",&w[i],&v[i]);
if(i==)
{
dp[][w[i]] = v[i];
}
else
{
for(int k=;k<=maxw;k++)
{
if(k<w[i])
dp[i][k]=dp[i-][k];//没有空间
else
dp[i][k] = max(dp[i-][k],dp[i-][k-w[i]]+v[i]);
max_all=max(max_all,dp[i][k]);
}
}
}
cout<<max_all<<endl;
return ;
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
输出a和b的编辑距离
kitten
sitting
dp[i][j] = max(dp[i-1][j],dp[i][j-1])+1,
替换是,dp[i][j] = dp[i-1][j-1],当a[i]==b[j] 不必操作 dp[i][j]=dp[i-1][j-1]
可得
dp[i][j] = max(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+a[i]==b[j]?0:1)
51nod 简单的动态规划的更多相关文章
- 一道简单的动态规划题目——House Robber
一.题目 House Robber(一道Leetcode上的关于动态规划的简单题目)具体描述如下: There is a professional robber planning to rob hou ...
- 两个简单的动态规划问题,0-1背包和最大不相邻数累加和,附递归c代码
最近面试经常被问到动态规划,所以自己做了一个总结,希望能进行深入的理解然后尝试能不能找到通用的解决手段.我觉得动态规划思想好理解,难的是怎么找出全部并且合理的子问题和出口. 我一般把问题分为两类,一类 ...
- leadcode的Hot100系列--62. 不同路径--简单的动态规划
题目比较清晰,简单来说就是: A B C D E F G H I J K L 只能往右或者往下,从A到L,能有几种走法. 这里使用动态规划的方法来做一下. 动态规划最重要的就是动态方程,这里简单说下这 ...
- River Crossing 简单的动态规划 .
第一行 t 表示有几组测试数据 . 每组测试数据的 第一行是 n, m . 然后 下面有n行数据 . 题意:有1个人和N只羊要过河.一个人单独过河花费的时间是M,每次带一只羊过河花费时 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
- HDU 1176 免费馅饼 简单动态规划
世道很简单的动态规划,但是却错了,让我很无语,改来改去还是不对,第二天有写就对了,之后我就耐着性子慢慢比较之前的错误代码,发现 第一次错:纯粹用了a[i][j]+=max3(a[i+1][j-1], ...
- codeforces 1443D,解法简单,思维缜密的动态规划问题
大家好,欢迎来到codeforces专题. 今天选择的问题是1443场次的D题,这题是全场倒数第三题,截止到现在一共通过了2800余人.这题的思路不算难,但是思考过程非常有趣,这也是这一期选择它的原因 ...
- {POJ}{动态规划}{题目列表}
动态规划与贪心相关: {HDU}{4739}{Zhuge Liang's Mines}{压缩DP} 题意:给定20个点坐标,求最多有多少个不相交(点也不相交)的正方形 思路:背包问题,求出所有的正方形 ...
随机推荐
- 深入剖析通知中心和KVO
深入剖析通知中心和KVO 要先了解KVO和通知中心,就得先说说观察者模式,那么观察者模式到底是什么呢?下面来详细介绍什么是观察者模式. 观察者模式 -A对B的变化感兴趣,就注册成为B的观察者,当B发生 ...
- Native与H5交互的一些解决方法
一. 原生代码中直接加载页面 1. 具体案例 加载本地/网络HTML5作为功能介绍页 2. 代码示例 //本地 -(void)loadLocalPage:(UIWebView*)webVi ...
- 敏捷开发与jira之流程
敏捷流程在Jira中的运用
- 集合3--毕向东java基础教程视频学习笔记
Day 15 集合框架01 TreeSet02 TreeSet存储自定义对象03 二叉树04 实现Comparator方式排序05 TreeSet练习06 泛型概述07 泛型使用08 泛型类09 泛型 ...
- The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path解决方案
0.环境: win7系统,Tomcat9配置无误. 1.错误: 项目中某一.jps页面忽然出现错误,鼠标点上去为:The superclass "javax.servlet.http.Htt ...
- Mysql 安装-windows X64
1.首先下载mysql文件包 2.将下载到的mysql-5.6.24-x64.zip进行解压. 3.安装,直接下一步. 4.进入文件夹内复制my-default.ini文件,并重命名为my.ini 5 ...
- Jsoup做接口测试
最早用Jsoup是有一个小的爬虫应用要写,发现Jsoup较HttpClient轻便多了,API也方便易懂,上手很快,对于response的Document解析的选择器用的是cssSelector(Jq ...
- 012.对netmap API的解读
一.简要说明: 1.netmap API主要为两个头文件netmap.h 和netmap_user.h ,当解压下载好的netmap程序后,在./netmap/sys/net/目录下,本文主要对这两个 ...
- [原创]基于rsync算法的目的性改进-RexSync
rsync是一种文件差异传输的算法,特点是高效且相似块识别率较高.具体算法这边就不赘述,网上很多,官方文档也描述的很清楚. rsync提高文件比对效率的一个核心算法之一就是rolling checks ...
- shell编程之正则表达式
什么是正则表达式?正则表达式是用于描述字符排列和匹配模式的一种语法规则.在很多程序设计语言中都支持利用正则表达式来进行字符串的操作,不同语言中的正则表达式略有不同,但是毕竟都是正则,其本质思想都是一致 ...