详细格式:https://grail.cs.washington.edu/projects/bal/

Bundle Adjustment in the Large

Recent work in Structure from Motion has demonstrated the possibility of reconstructing geometry from large-scale community photo collections. Bundle adjustment, the joint non-linear refinement of camera and point parameters, is a key component of most SfM systems, and one which can consume a significant amount of time for large problems. As the number of photos in such collections continues to grow into the hundreds of thousands or even millions, the scalability of bundle adjustment algorithms has become a critical issue.

In this project, we consider the design and implementation of a new Inexact Newton type bundle adjustment algorithm, which uses substantially less time and memory than standard Schur complement based methods, without compromising on the quality of the solution. We explore the use of the Conjugate Gradients algorithm for calculating the Newton step and its performance as a function of some simple and computationally efficient preconditioners. We also show that the use of the Schur complement is not limited to factorization-based methods, how it can be used as part of the Conjugate Gradients (CG) method without incurring the computational cost of actually calculating and storing it in memory, and how this use is equivalent to the choice of a particular preconditioner.

This research is part of Community Photo Collections project at the University of Washington GRAIL Lab. which explores the use of large scale internet image collections for furthering research in computer vision and graphics.

Team

Sameer Agarwal, University of Washington

Noah Snavely, Cornell University

Steve Seitz, University of Washington

Richard Szeliski, Microsoft Research

Paper

Bundle Adjustment in the Large

Sameer Agarwal, Noah Snavely, Steven M. Seitz and Richard Szeliski

European Conference on Computer Vision, 2010 , Crete, Greece.

Supplementary Material

Poster

Software & Data

As part of this project we will be releasing all the test problems, software and performance data reported in the paper. Currently we have the test problems available for download. The code shall be available shortly.

We experimented with two sources of data:

Images captured at a regular rate using a Ladybug camera mounted on a moving vehicle. Image matching was done by exploiting the temporal order of the images and the GPS information captured at the time of image capture.

Images downloaded from Flickr.com and matched using the system described in Building Rome in a Day. We used images from Trafalgar Square and the cities of Dubrovnik, Venice, and Rome.

For Flickr photographs, the matched images were decomposed into a skeletal set (i.e., a sparse core of images) and a set of leaf images. The skeletal set was reconstructed first, then the leaf images were added to it via resectioning followed by triangulation of the remaing 3D points. The skeletal sets and the Ladybug datasets were reconstructed incrementally using a modified version of Bundler, which was instrumented to dump intermediate unoptimized reconstructions to disk. This gave rise to the Ladybug, Trafalgar Square, Dubrovnik and Venice datasets. We refer to the bundle adjustment problems obtained after adding the leaf images to the skeletal set and triangulating the remaing points as the Final problems.

Available Datasets

Ladybug

Trafalgar Square

Dubrovnik

Venice

Final

Camera Model

We use a pinhole camera model; the parameters we estimate for each camera area rotation R, a translation t, a focal length f and two radial distortion parameters k1 and k2. The formula for projecting a 3D point X into a camera R,t,f,k1,k2 is:

P = R * X + t (conversion from world to camera coordinates)

p = -P / P.z (perspective division)

p' = f * r(p) * p (conversion to pixel coordinates)

where P.z is the third (z) coordinate of P. In the last equation, r(p) is a function that computes a scaling factor to undo the radial distortion:

r(p) = 1.0 + k1 * ||p||^2 + k2 * ||p||^4.

This gives a projection in pixels, where the origin of the image is the center of the image, the positive x-axis points right, and the positive y-axis points up (in addition, in the camera coordinate system, the positive z-axis points backwards, so the camera is looking down the negative z-axis, as in OpenGL).

Data Format

Each problem is provided as a bzip2 compressed text file in the following format.

<num_cameras> <num_points> <num_observations>
<camera_index_1> <point_index_1> <x_1> <y_1>
...
<camera_index_num_observations> <point_index_num_observations> <x_num_observations> <y_num_observations>
<camera_1>
...
<camera_num_cameras>
<point_1>
...
<point_num_points>

Where, there camera and point indices start from 0. Each camera is a set of 9 parameters - R,t,f,k1 and k2. The rotation R is specified as a Rodrigues' vector.

看一个数据集:



16为相机个数, 22106为路标个数 83718为观测数据个数

第一行:

0为第0个相机, 0为第0个路标, 后面2个为观测数据,像素坐标

83718后面是相关参数,前面是相机参数有9维:-R(罗德里格斯向量3维),t(3维),f(相机焦距),k1(畸变参数),k2(畸变参数)。依次对应相机0 - num_cameras

再后面是路标点的空间3D参数

BAL数据集详解的更多相关文章

  1. BI之SSAS完整实战教程5 -- 详解多维数据集结构

    之前简单介绍过多维数据集(Cube)的结构. 原来计划将Cube结构这部分内容打散,在实验中穿插讲解, 考虑到结构之间不同的部分都有联系,如果打散了将反而不好理解,还是直接一次性全部讲完. 本篇我们将 ...

  2. 全网最详细的大数据集群环境下多个不同版本的Cloudera Hue之间的界面对比(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 安装Hue后的一些功能 ...

  3. 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...

  4. Ubuntu14.04下Ambari安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)

    不多说,直接上干货! 写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentO ...

  5. Ubuntu14.04下Cloudera安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)(在线或离线)

    第一步: Cloudera Manager安装之Cloudera Manager安装前准备(Ubuntu14.04)(一) 第二步: Cloudera Manager安装之时间服务器和时间客户端(Ub ...

  6. 关于在真实物理机器上用cloudermanger或ambari搭建大数据集群注意事项总结、经验和感悟心得(图文详解)

    写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentOS6.5版本)和clo ...

  7. snort + barnyard2如何正确读取snort.unified2格式的数据集并且入库MySQL(图文详解)

    不多说,直接上干货! 为什么,要写这篇论文? 是因为,目前科研的我,正值研三,致力于网络安全.大数据.机器学习研究领域! 论文方向的需要,同时不局限于真实物理环境机器实验室的攻防环境.也不局限于真实物 ...

  8. Oracle创建表语句(Create table)语法详解及示例、、 C# 调用Oracle 存储过程返回数据集 实例

    Oracle创建表语句(Create table)语法详解及示例 2010-06-28 13:59:13|  分类: Oracle PL/SQL|字号 订阅 创建表(Create table)语法详解 ...

  9. TextCNN 代码详解(附测试数据集以及GitHub 地址)

    前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) 一.textCNN 整体框架 1. 模型架构 图一:textCNN 模型结 ...

  10. EasyPR--开发详解(6)SVM开发详解

    在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机 ...

随机推荐

  1. 深入理解Golang 闭包,直通面试

    大家好 今天为大家讲解的面试专题是: 闭包. 定义 闭包在计算机科学中的定义是:在函数内部引用了函数内部变量的函数. 看完定义后,我陷入了沉思...确实,如果之前没有接触过闭包或者对闭包不理解的话,这 ...

  2. C温故补缺(十四):内存管理

    内存管理 stdlib库中有几个内存管理相关的函数 序号 函数和描述 1 void *calloc(int num, int size);在内存中动态地分配 num 个长度为size 个字节 的连续空 ...

  3. 关于linux fcitx输入法候选词中含有省略号的问题解决

    前言 这几天舍弃了 sogou 输入法,换上了google拼音输入法,因为我在纯文本终端调用中文输入法,搜狗显示出来的是加密的,候选词都是加密的,很烦这种 问题原因 这个问题主要是因为 云拼音 模块凉 ...

  4. MongoDB海量数据分页查询优化

    MongoDB海量数据分页查询优化 一.背景 大量数据需从Mongo拿出来,一次性拿出来不科学,传统分页效率低下 二.传统方案 就是最常规的方案,假设 我们需要对文章 articles 这个表(集合) ...

  5. C#实现文件导入与导出

    无论是文件的导入与导出都需要引入IO库,引入方法如下: using System.IO; 通过以下代码可以实现将文件导入到数组中 string path;//定义一个路径 OpenFileDialog ...

  6. RocketMQ Connect 构建流式数据处理平台

    本文作者:孙晓健,Apache RocketMQ Committer 01 RocketMQ Connect RocketMQ Connect 是一款可扩展的在 RocketMQ 与其他系统之间做流式 ...

  7. java中的动态绑定机制

    本文主要讲述java中的动态绑定机制. 老韩ppt关于动态绑定机制: 示例代码如下: public class DynamicBinding { public static void main(Str ...

  8. Go语言使用场景 | go语言与其它开源语言比较 | Go WEB框架选型

    一.Go语言使用场景 1. 关于go语言 2007年,受够了C++煎熬的Google首席软件工程师Rob Pike纠集Robert Griesemer和Ken Thompson两位牛人,决定创造一种新 ...

  9. 【Java】线程池梳理

    [Java]线程池梳理 前言 线程池:本质上是一种对象池,用于管理线程资源.在任务执行前,需要从线程池中拿出线程来执行.在任务执行完成之后,需要把线程放回线程池.通过线程的这种反复利用机制,可以有效地 ...

  10. python进阶之路7 数据类型的内置方法

    内容回顾 while 循环补充说明 1.死循环 2.while循环嵌套和全局标志位 for循环 1.for 变量名 in 待遍历数据 for循环体代码 2.for 也可以与break continue ...