JZOJ.4724 斐波那契
\(\text{Problem}\)

\(\text{Solution}\)
\(\text{Fibonacci}\) 数列有一个性质:若 \(H_1=a,H_2=b,H_n=H_{n-2}+H_{n-1}\)
则有 \(H_n=a\cdot F_{n-2}+b\cdot F_{n-1}\)
有了这个性质后,对一段区间加斐波那契数列后,我们可以 \(O(1)\) 知道任意一位加的数是多少(当然是预处理出斐波那契数列后)
也就是说维护这段区间前两位加的数 \({a,b}\) 即可
对于一段区间求区间和即 \(ans=a\cdot[(\sum_{i=1}^{r-l-1}F_i)+1]+b\cdot\sum_{i=1}^{r-l}F_i\)
线段树维护每段区间加的 \(a,b\) 即可
\(\text{Code}\)
#include<cstdio>
#define ls (p << 1)
#define rs (ls | 1)
typedef long long LL;
using namespace std;
const int N = 1e5 + 5;
const LL P = 1e9 + 9;
int n, m;
LL a[N], F[N], sF[N];
LL sum[N * 4], tg1[N * 4], tg2[N * 4];
void pushup(int p) {sum[p] = (sum[ls] + sum[rs]) % P;}
void update1(int l, int r, int p, int x, int v)
{
if (l == r) return void(tg1[p] = sum[p] = v);
int mid = (l + r) >> 1;
if (x <= mid) update1(l, mid, ls, x, v);
else update1(mid + 1, r, rs, x, v);
pushup(p);
}
void change(int l, int r, int p, LL v1, LL v2)
{
sum[p] = (sum[p] + v1 * (sF[(r - l - 1)<0?0:(r - l - 1)] + 1) % P + v2 * sF[r - l] % P) % P;
tg1[p] = (tg1[p] + v1) % P, tg2[p] = (tg2[p] + v2) % P;
}
void pushdown(int l, int r, int p)
{
if (!tg1[p] && !tg2[p]) return;
int mid = (l + r) >> 1;
change(l, mid, ls, tg1[p], tg2[p]);
LL v1 = (tg1[p] * F[mid - l] % P + tg2[p] * F[mid - l + 1] % P) % P;
LL v2 = (tg1[p] * F[mid - l + 1] % P + tg2[p] * F[mid - l + 2] % P) % P;
change(mid + 1, r, rs, v1, v2);
tg1[p] = 0, tg2[p] = 0;
}
void update2(int l, int r, int p, int x, int y, LL v1, LL v2)
{
if (x <= l && r <= y) return void(change(l, r, p, v1, v2));
int mid = (l + r) >> 1;
pushdown(l, r, p);
if (x <= mid) update2(l, mid, ls, x, y, v1, v2);
LL a = v1, b = v2;
if (l <= x && x <= mid) a = (v1 * F[mid - x] % P + v2 * F[mid - x + 1] % P) % P,
b = (v1 * F[mid - x + 1] % P + v2 * F[mid - x + 2] % P) % P;
else if (l > x && x <= mid) a = (v1 * F[mid - l] % P + v2 * F[mid - l + 1] % P) % P,
b = (v1 * F[mid - l + 1] % P + v2 * F[mid - l + 2] % P) % P;
if (y > mid) update2(mid + 1, r, rs, x, y, a, b);
pushup(p);
}
LL query(int l, int r, int p, int x, int y)
{
if (x <= l && r <= y) return sum[p];
int mid = (l + r) >> 1; LL ret = 0;
pushdown(l, r, p);
if (x <= mid) ret = query(l, mid, ls, x, y);
if (y > mid) ret = (ret + query(mid + 1, r, rs, x, y)) % P;
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1, x; i <= n; i++) scanf("%d", &x), update1(1, n, 1, i, x);
F[1] = 1, F[2] = 1, sF[1] = 1, sF[2] = 2;
for(int i = 3; i <= n; i++) F[i] = (F[i - 1] + F[i - 2]) % P;
for(int i = 3; i <= n; i++) sF[i] = (sF[i - 1] + F[i]) % P;
for(int op, l, r; m; --m)
{
scanf("%d%d%d", &op, &l, &r);
if (op == 1) update2(1, n, 1, l, r, F[1], F[2]);
else printf("%lld\n", query(1, n, 1, l, r));
}
}
JZOJ.4724 斐波那契的更多相关文章
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- Ural 1225. Flags 斐波那契DP
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Python递归及斐波那契数列
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...
- 简单Java算法程序实现!斐波那契数列函数~
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...
随机推荐
- 在Windows模拟器中使用LVGL8.3
引言 LVGL是一个跨平台.轻量级.易于移植的图形库.也因其支持大量特性和其易于裁剪,配置开关众多,且版本升级较快,不同版本之间存在一定的差异性,相关的使用教程有一定的滞后性,由于缺少最新版本的中文教 ...
- Spring01:概述、工厂模式解耦、Spring中的IOC
四天课程安排 第一天:Spring框架的概述.Spring中基于XML的IOC配置 第二天: Spring中基于注解的IOC和IOC的案例(单表增删改查,持久层随意) 第三天:Spring中的AOP和 ...
- 【每日一题】【快速排序过程、循环过程无=、递归参数】2022年1月16日-NC140 排序
快速排序 对时间复杂度和空间复杂度有要求 方法1:快速排序-递归 import java.util.*; public class Solution { /** * 代码中的类名.方法名.参数名已经指 ...
- TypeScript 之 Interface
Interface 描述:用来描述对象的形状,能够被继承 常用语法 ( Common Syntax ) 1. 描述普通对象 interface JsonResponse { version:numbe ...
- elasticsearch倒排索引(全面了解)
SimpleAI推荐语: 前年转过这篇文章,最近在看检索相关论文,发现又有点忘记倒排索引(inverted index)的具体内容,遂翻出来再看看,不得不说,这个漫画画的太好了,娓娓道来,一看就懂,再 ...
- 如何查看计算机的CPU信息
CPU-Z是一款家喻户晓的CPU检测软件,是检测CPU使用程度极高的一款软件.它支持的CPU种类相当全面,软件的启动速度及检测速度都很快.另外,它还能检测主板和内存的相关信息,其中就有我们常用的内存双 ...
- 使用pip命令安装库时提示Could not build wheels for six, since package 'wheel' is not installed
在使用pip命令安装库时提示Could not build wheels for six, since package 'wheel' is not installed 解决以上问题可用 pip in ...
- 【机器学习】李宏毅——Anomaly Detection(异常检测)
异常检测概述 首先要明确一下什么是异常检测任务.对于异常检测任务来说,我们希望能够通过现有的样本来训练一个架构,它能够根据输入与现有样本之间是否足够相似,来告诉我们这个输入是否是异常的,例如下图: 那 ...
- overflow_auto在flex_1的容器失效
旧文章从语雀迁移过来,原日期为2022-02-22 我们经常使用flex:1来动态分配父容器剩余空间,这时候如果要在容器上增加滚动条,使用overflow: auto可能会失效. 原因: 一般原因:因 ...
- 2022年7月13日,第四组,周鹏,JS做计算器代码
代码不难,看了我前面笔记的应该能看懂. 没看?(= ̄ω ̄=)喵了个咪(๑‾᷅^‾᷅๑) 嫌弃你 还看啥,去看啊!要不直接复制代码吧!( ̄へ ̄)( ̄へ ̄)( ̄へ ̄) Document 0 / * - 7 ...