文章首发在公众号(龙台的技术笔记),之后同步到博客园和个人网站:xiaomage.info

优化项目代码过程中发现一个千万级数据深分页问题,缘由是这样的

库里有一张耗材 MCS_PROD 表,通过同步外部数据中台多维度数据,在系统内部组装为单一耗材产品,最终同步到 ES 搜索引擎

MySQL 同步 ES 流程如下:

  1. 通过定时任务的形式触发同步,比如间隔半天或一天的时间频率
  2. 同步的形式为增量同步,根据更新时间的机制,比如第一次同步查询 >= 1970-01-01 00:00:00.0
  3. 记录最大的更新时间进行存储,下次更新同步以此为条件
  4. 以分页的形式获取数据,当前页数量加一,循环到最后一页

在这里问题也就出现了,MySQL 查询分页 OFFSET 越深入,性能越差,初步估计线上 MCS_PROD 表中记录在 1000w 左右

如果按照每页 10 条,OFFSET 值会拖垮查询性能,进而形成一个 "性能深渊"

同步类代码针对此问题有两种优化方式:

  1. 采用游标、流式方案进行优化
  2. 优化深分页性能,文章围绕这个题目展开

文章目录如下:

  • 软硬件说明
  • 重新认识 MySQL 分页
  • 深分页优化
    • 子查询优化
    • 延迟关联
    • 书签记录
  • ORDER BY 巨坑,慎踩
    • ORDER BY 索引失效举例
  • 结言

软硬件说明

MySQL VERSION

mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.30 |
+-----------+
1 row in set (0.01 sec)

表结构说明

借鉴公司表结构,字段、长度以及名称均已删减

mysql> DESC MCS_PROD;
+-----------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------------------+--------------+------+-----+---------+----------------+
| MCS_PROD_ID | int(11) | NO | PRI | NULL | auto_increment |
| MCS_CODE | varchar(100) | YES | | | |
| MCS_NAME | varchar(500) | YES | | | |
| UPDT_TIME | datetime | NO | MUL | NULL | |
+-----------------------+--------------+------+-----+---------+----------------+
4 rows in set (0.01 sec)

通过测试同学帮忙造了 500w 左右数据量

mysql> SELECT COUNT(*) FROM MCS_PROD;
+----------+
| count(*) |
+----------+
| 5100000 |
+----------+
1 row in set (1.43 sec)

SQL 语句如下

因为功能需要满足 增量拉取的方式,所以会有数据更新时间的条件查询,以及相关 查询排序(此处有坑)

SELECT
MCS_PROD_ID,
MCS_CODE,
MCS_NAME,
UPDT_TIME
FROM
MCS_PROD
WHERE
UPDT_TIME >= '1970-01-01 00:00:00.0' ORDER BY UPDT_TIME
LIMIT xx, xx

重新认识 MySQL 分页

LIMIT 子句可以被用于强制 SELECT 语句返回指定的记录数。LIMIT 接收一个或两个数字参数,参数必须是一个整数常量

如果给定两个参数,第一个参数指定第一个返回记录行的偏移量,第二个参数指定返回记录行的最大数

举个简单的例子,分析下 SQL 查询过程,掌握深分页性能为什么差

mysql> SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD WHERE (UPDT_TIME >= '1970-01-01 00:00:00.0') ORDER BY UPDT_TIME LIMIT 100000, 1;
+-------------+-------------------------+------------------+---------------------+
| MCS_PROD_ID | MCS_CODE | MCS_NAME | UPDT_TIME |
+-------------+-------------------------+------------------+---------------------+
| 181789 | XA601709733186213015031 | 尺、桡骨LC-DCP骨板 | 2020-10-19 16:22:19 |
+-------------+-------------------------+------------------+---------------------+
1 row in set (3.66 sec) mysql> EXPLAIN SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD WHERE (UPDT_TIME >= '1970-01-01 00:00:00.0') ORDER BY UPDT_TIME LIMIT 100000, 1;
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+-----------------------+
| 1 | SIMPLE | MCS_PROD | NULL | range | MCS_PROD_1 | MCS_PROD_1 | 5 | NULL | 2296653 | 100.00 | Using index condition |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+-----------------------+
1 row in set, 1 warning (0.01 sec)

简单说明下上面 SQL 执行过程:

  1. 首先查询了表 MCS_PROD,进行过滤 UPDT_TIME 条件,查询出展示列(涉及回表操作)进行排序以及 LIMIT
  2. LIMIT 100000, 1 的意思是扫描满足条件的 100001 行,然后扔掉前 100000 行

MySQL 耗费了 大量随机 I/O 在回表查询聚簇索引的数据上,而这 100000 次随机 I/O 查询数据不会出现在结果集中

如果系统并发量稍微高一点,每次查询扫描超过 100000 行,性能肯定堪忧,另外 LIMIT 分页 OFFSET 越深,性能越差(多次强调)

深分页优化

关于 MySQL 深分页优化常见的大概有以下三种策略:

  1. 子查询优化
  2. 延迟关联
  3. 书签记录

上面三点都能大大的提升查询效率,核心思想就是让 MySQL 尽可能扫描更少的页面,获取需要访问的记录后再根据关联列回原表查询所需要的列

子查询优化

子查询深分页优化语句如下:

mysql> SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD WHERE MCS_PROD_ID >= ( SELECT m1.MCS_PROD_ID FROM MCS_PROD m1 WHERE m1.UPDT_TIME >= '1970-01-01 00:00:00.0' ORDER BY m1.UPDT_TIME LIMIT 3000000, 1) LIMIT 1;
+-------------+-------------------------+------------------------+
| MCS_PROD_ID | MCS_CODE | MCS_NAME |
+-------------+-------------------------+------------------------+
| 3021401 | XA892010009391491861476 | 金属解剖型接骨板T型接骨板A |
+-------------+-------------------------+------------------------+
1 row in set (0.76 sec) mysql> EXPLAIN SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD WHERE MCS_PROD_ID >= ( SELECT m1.MCS_PROD_ID FROM MCS_PROD m1 WHERE m1.UPDT_TIME >= '1970-01-01 00:00:00.0' ORDER BY m1.UPDT_TIME LIMIT 3000000, 1) LIMIT 1;
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+--------------------------+
| 1 | PRIMARY | MCS_PROD | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 2296653 | 100.00 | Using where |
| 2 | SUBQUERY | m1 | NULL | range | MCS_PROD_1 | MCS_PROD_1 | 5 | NULL | 2296653 | 100.00 | Using where; Using index |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+--------------------------+
2 rows in set, 1 warning (0.77 sec)

根据执行计划得知,子查询 table m1 查询是用到了索引。首先在 索引上拿到了聚集索引的主键 ID 省去了回表操作,然后第二查询直接根据第一个查询的 ID 往后再去查 10 个就可以了

延迟关联

"延迟关联" 深分页优化语句如下:

mysql> SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD INNER JOIN (SELECT m1.MCS_PROD_ID FROM MCS_PROD m1 WHERE m1.UPDT_TIME >= '1970-01-01 00:00:00.0' ORDER BY m1.UPDT_TIME LIMIT 3000000, 1) AS  MCS_PROD2 USING(MCS_PROD_ID);
+-------------+-------------------------+------------------------+
| MCS_PROD_ID | MCS_CODE | MCS_NAME |
+-------------+-------------------------+------------------------+
| 3021401 | XA892010009391491861476 | 金属解剖型接骨板T型接骨板A |
+-------------+-------------------------+------------------------+
1 row in set (0.75 sec) mysql> EXPLAIN SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD INNER JOIN (SELECT m1.MCS_PROD_ID FROM MCS_PROD m1 WHERE m1.UPDT_TIME >= '1970-01-01 00:00:00.0' ORDER BY m1.UPDT_TIME LIMIT 3000000, 1) AS MCS_PROD2 USING(MCS_PROD_ID);
+----+-------------+------------+------------+--------+---------------+------------+---------+-----------------------+---------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+--------+---------------+------------+---------+-----------------------+---------+----------+--------------------------+
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 2296653 | 100.00 | NULL |
| 1 | PRIMARY | MCS_PROD | NULL | eq_ref | PRIMARY | PRIMARY | 4 | MCS_PROD2.MCS_PROD_ID | 1 | 100.00 | NULL |
| 2 | DERIVED | m1 | NULL | range | MCS_PROD_1 | MCS_PROD_1 | 5 | NULL | 2296653 | 100.00 | Using where; Using index |
+----+-------------+------------+------------+--------+---------------+------------+---------+-----------------------+---------+----------+--------------------------+
3 rows in set, 1 warning (0.00 sec)

思路以及性能与子查询优化一致,只不过采用了 JOIN 的形式执行

书签记录

关于 LIMIT 深分页问题,核心在于 OFFSET 值,它会 导致 MySQL 扫描大量不需要的记录行然后抛弃掉

我们可以先使用书签 记录获取上次取数据的位置,下次就可以直接从该位置开始扫描,这样可以 避免使用 OFFEST

假设需要查询 3000000 行数据后的第 1 条记录,查询可以这么写

mysql> SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD WHERE MCS_PROD_ID < 3000000 ORDER BY UPDT_TIME LIMIT 1;
+-------------+-------------------------+---------------------------------+
| MCS_PROD_ID | MCS_CODE | MCS_NAME |
+-------------+-------------------------+---------------------------------+
| 127 | XA683240878449276581799 | 股骨近端-1螺纹孔锁定板(纯钛)YJBL01 |
+-------------+-------------------------+---------------------------------+
1 row in set (0.00 sec) mysql> EXPLAIN SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME FROM MCS_PROD WHERE MCS_PROD_ID < 3000000 ORDER BY UPDT_TIME LIMIT 1;
+----+-------------+----------+------------+-------+---------------+------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+------+----------+-------------+
| 1 | SIMPLE | MCS_PROD | NULL | index | PRIMARY | MCS_PROD_1 | 5 | NULL | 2 | 50.00 | Using where |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

好处是很明显的,查询速度超级快,性能都会稳定在毫秒级,从性能上考虑碾压其它方式

不过这种方式局限性也比较大,需要一种类似连续自增的字段,以及业务所能包容的连续概念,视情况而定

上图是阿里云 OSS Bucket 桶内文件列表,大胆猜测是不是可以采用书签记录的形式完成

ORDER BY 巨坑, 慎踩

以下言论可能会打破你对 order by 所有 美好 YY

先说结论吧,当 LIMIT OFFSET 过深时,会使 ORDER BY 普通索引失效(联合、唯一这些索引没有测试)

mysql> EXPLAIN SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME,UPDT_TIME FROM MCS_PROD WHERE (UPDT_TIME >= '1970-01-01 00:00:00.0') ORDER BY UPDT_TIME LIMIT 100000, 1;
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+-----------------------+
| 1 | SIMPLE | MCS_PROD | NULL | range | MCS_PROD_1 | MCS_PROD_1 | 5 | NULL | 2296653 | 100.00 | Using index condition |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+---------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

先来说一下这个 ORDER BY 执行过程:

  1. 初始化 SORT_BUFFER,放入 MCS_PROD_ID,MCS_CODE,MCS_NAME,UPDT_TIME 四个字段
  2. 从索引 UPDT_TIME 找到满足条件的主键 ID,回表查询出四个字段值存入 SORT_BUFFER
  3. 从索引处继续查询满足 UPDT_TIME 条件记录,继续执行步骤 2
  4. 对 SORT_BUFFER 中的数据按照 UPDT_TIME 排序
  5. 排序成功后取出符合 LIMIT 条件的记录返回客户端

按照 UPDT_TIME 排序可能在内存中完成,也可能需要使用外部排序,取决于排序所需的内存和参数 SORT_BUFFER_SIZE

SORT_BUFFER_SIZE 是 MySQL 为排序开辟的内存。如果排序数据量小于 SORT_BUFFER_SIZE,排序会在内存中完成。如果数据量过大,内存放不下,则会利用磁盘临时文件排序

针对 SORT_BUFFER_SIZE 这个参数在网上查询到有用资料比较少,大家如果测试过程中存在问题,可以加微信一起沟通

ORDER BY 索引失效举例

OFFSET 100000 时,通过 key Extra 得知,没有使用磁盘临时文件排序,这个时候把 OFFSET 调整到 500000

一首凉凉送给写这个 SQL 的同学,发现了 Using filesort

mysql> EXPLAIN SELECT MCS_PROD_ID,MCS_CODE,MCS_NAME,UPDT_TIME FROM MCS_PROD WHERE (UPDT_TIME >= '1970-01-01 00:00:00.0') ORDER BY UPDT_TIME LIMIT 500000, 1;
+----+-------------+----------+------------+------+---------------+------+---------+------+---------+----------+-----------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+---------+----------+-----------------------------+
| 1 | SIMPLE | MCS_PROD | NULL | ALL | MCS_PROD_1 | NULL | NULL | NULL | 4593306 | 50.00 | Using where; Using filesort |
+----+-------------+----------+------------+------+---------------+------+---------+------+---------+----------+-----------------------------+
1 row in set, 1 warning (0.00 sec)

Using filesort 表示在索引之外,需要额外进行外部的排序动作,性能必将受到严重影响

所以我们应该 结合相对应的业务逻辑避免常规 LIMIT OFFSET,采用 # 深分页优化 章节进行修改对应业务

结言

最后有一点需要声明下,MySQL 本身并不适合单表大数据量业务

因为 MySQL 应用在企业级项目时,针对库表查询并非简单的条件,可能会有更复杂的联合查询,亦或者是大数据量时存在频繁新增或更新操作,维护索引或者数据 ACID 特性上必然存在性能牺牲

如果设计初期能够预料到库表的数据增长,理应构思合理的重构优化方式,比如 ES 配合查询、分库分表、TiDB 等解决方式

参考资料:

  1. 《高性能 MySQL 第三版》
  2. 《MySQL 实战 45 讲》

MySQL 千万数据库深分页查询优化,拒绝线上故障!的更多相关文章

  1. MySQL 百万级分页优化(Mysql千万级快速分页)(转)

    http://www.jb51.net/article/31868.htm 以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 复制代码 代码如下: SELECT * FROM table OR ...

  2. MySQL 百万级分页优化(Mysql千万级快速分页)

    以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 : SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 : ...

  3. 如何优化Mysql千万级快速分页,limit优化快速分页,MySQL处理千万级数据查询的优化方案

    如何优化Mysql千万级快速分页,limit优化快速分页,MySQL处理千万级数据查询的优化方案

  4. JAVA 线上故障排查套路,从 CPU、磁盘、内存、网络到GC 一条龙!

    线上故障主要会包括cpu.磁盘.内存以及网络问题,而大多数故障可能会包含不止一个层面的问题,所以进行排查时候尽量四个方面依次排查一遍. 同时例如jstack.jmap等工具也是不囿于一个方面的问题的, ...

  5. JAVA线上故障排查手册-(推荐)

    参考:https://fredal.xin/java-error-check?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=tout ...

  6. JVM 线上故障排查基本操作--CPU飙高

    JVM 线上故障排查基本操作 CPU 飚高 线上 CPU 飚高问题大家应该都遇到过,那么如何定位问题呢? 思路:首先找到 CPU 飚高的那个 Java 进程,因为你的服务器会有多个 JVM 进程.然后 ...

  7. JVM 线上故障排查

    JVM 线上故障排查 Linux 1.1 CPU 1.2 内存 1.3 存储 1.4 网络 一.CPU 飚高 寻找原因 二.内存问题排查 三.一般排查问题的方法 四.应用场景举例 4.1 怎么查看某个 ...

  8. JVM线上故障初步简易排查

    线上故障主要包括cpu 磁盘 内存 网络等问题 依次排查 1.cpu 1) 先用ps找到进程pid 2) top -H -p pid 找到cpu占用高的线程 3)printf '%x\n' pid 获 ...

  9. MySQL慢查询优化(线上案例调优)

    文章说明 这篇文章主要是记录自己最近在真实工作中遇到的慢查询的案例,然后进行调优分析的过程,欢迎大家一起讨论调优经验.(以下出现的表名,列名都是化名,实际数据也进行过一点微调.) PS:最近做了一个面 ...

随机推荐

  1. CRLF 漏洞学习和工具使用

    原理 CRLF 指的是回车符(CR,ASCII 13,\r,%0d) 和换行符(LF,ASCII 10,\n,%0a),操作系统就是根据这个标识来进行换行的.但是如果对输入过滤不严,就会将恶意语句注入 ...

  2. 2020极客大挑战Web题

    前言 wp是以前写的,整理一下发上来. 不是很全. 2020 极客大挑战 WEB 1.sha1碰撞 题目 图片: 思路 题目说,换一种请求方式.于是换成post.得到一给含有代码的图片 图片: 分析该 ...

  3. python---使用pipreqs及遇到的问题

    pipreqs简介 ​ 项目开发的过程中, 避免不了搭建和部署开发环境, 而搭建和部署开发环境需要项目依赖的python第三方包, 如何获取一个项目中所需依赖的python第三方包, 这就需要使用pi ...

  4. 安全市场迎来新挑战,FinClip助力车联网数据安全

    随着汽车工业的发展与电子技术的进步,智能汽车迎来了前所未有的蓬勃发展,随着汽车电动化.网联化.智能化交融发展,车辆运行安全.数据安全和网络安全风险交织叠加,安全形势更加复杂严峻......

  5. C语言结构体指针与结构体变量作形参的区别

    区别 结构体变量 结构体变量作为形参,传递的是结构体变量本身,是一种值传递 形参结构体变量成员值的改变不影响对应的实参构体变量成员值的改变 结构体指针 结构体指针作为函数参数,传递的是指向结构体变量的 ...

  6. Java学习day38

    Java内存:1.堆:存放new的对象和数组:可以被所有线程共享,不会存放别的对象引用 2.栈:存放基本变量类型(会包含这个基本类型的具体数值):存放对象的变量(会存放这个引用在堆里面的具体地址) 3 ...

  7. Spring 源码 (1)Spring IOC Bean 创建的整体流程

    Spring IOC 中涉及的重要接口 BeanDefinition Bean的描述信息,实现类包括 RootBeanDefinition 和 GenericBeanDefinition,Bean的描 ...

  8. 前端性能优化之js,css调用优化

    规则1:减少HTTP请求     把多个JS请求合并为一个JS请求,把多个CSS请求合并为一个CSS请求.从而减少从客户端向服务器端的请求数.     规则3:添加Expires头     用http ...

  9. 基于Vue的v-charts导出图片并下载

    依赖 npm install file-saver 页面 <ve-chart ref="chart"></ve-chart> <el-button t ...

  10. 面渣逆袭:Spring三十五问,四万字+五十图详解

    大家好,我是老三啊,面渣逆袭 继续,这节我们来搞定另一个面试必问知识点--Spring. 有人说,"Java程序员都是Spring程序员",老三不太赞成这个观点,但是这也可以看出S ...