bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割)
题面描述见上
题解时间
一开始我真就把这玩意所说的切面当成了平面来做的
事实上只是说相邻的切点高度差都不超过 $ d $
对于一条 $ z $ 轴方向的线,把原题的点看成边,每个原题的点两端看成两个点就好(就是说一条线上有 $ r+1 $ 个点 $ r $ 条边),底端每一个点有一条由 $ S $ 连向它的不能断开( $ inf $ )的边,顶端每个点同理连向 $ T $
之后考虑处理相邻两点之间高度差不超过 $ d $
假设我们已经选了线 $ l_1 $ 上的一个原图点 $ p_1 $,那么与之相邻的一条线 $ l_2 $ 上选择的原图点 $ p_2 $ 纵坐标必须在一个区间内
从 $ p_1 $ 两端向 $ p_2 $ 可选范围两端连不能断开( $ inf $ )的边就行
然后直接跑最小割。
#include<bits/stdc++.h>
using namespace std;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+ch-'0';ch=getchar();}
tar=ret*f;
}
namespace LarjaIX
{
const int N=70011,M=1000011,inf=0x3f3f3f3f;
struct sumireko{int to,ne,w;}e[M<<1];int he[N],ecnt=1;
void addline(int f,int t,int w)
{
e[++ecnt].to=t,e[ecnt].w=w;
e[ecnt].ne=he[f],he[f]=ecnt;
e[++ecnt].to=f,e[ecnt].w=0;
e[ecnt].ne=he[t],he[t]=ecnt;
}
int head[N],dep[N];bool ins[N];
queue<int> qu;
bool bfs(int sp,int ep)
{
memcpy(head,he,sizeof(head));
memset(dep,0x3f,sizeof(dep));
dep[sp]=1,ins[sp]=1,qu.push(sp);
while(!qu.empty())
{
int x=qu.front();qu.pop();ins[x]=0;
for(int ei=he[x],t=e[ei].to;ei;ei=e[ei].ne,t=e[ei].to)
if(e[ei].w&&dep[t]>dep[x]+1)
{
dep[t]=dep[x]+1;
if(!ins[t]) qu.push(t),ins[t]=1;
}
}
return dep[ep]!=inf;
}
int dfs(int x,int lim,int ep)
{
if(x==ep||!lim) return lim;
int ret=0,tmp=0;
for(int ei=head[x],t=e[ei].to;ei;ei=e[ei].ne,t=e[ei].to)
{
head[x]=ei;
if(dep[t]==dep[x]+1) if(tmp=dfs(t,min(lim,e[ei].w),ep))
{
lim-=tmp,ret+=tmp;
e[ei].w-=tmp,e[ei^1].w+=tmp;
}
}
return ret;
}
int dinic(int sp,int ep)
{
int ret=0;
while(bfs(sp,ep))
ret+=dfs(sp,inf,ep);
return ret;
}
int p,q,r,d,a[44][44][44],id[44][44][44],ic,S,E;
int maid()
{
read(p),read(q),read(r),read(d);
for(int z=1;z<=r;z++)for(int x=1;x<=p;x++)for(int y=1;y<=q;y++) read(a[x][y][z]);
r++;
for(int x=1;x<=p;x++)for(int y=1;y<=q;y++)for(int z=1;z<=r;z++) id[x][y][z]=++ic;S=++ic,E=++ic;
for(int x=1;x<=p;x++)for(int y=1;y<=q;y++)
{
addline(S,id[x][y][1],inf),addline(id[x][y][r],E,inf);
for(int z=1;z<r;z++)
{
addline(id[x][y][z],id[x][y][z+1],a[x][y][z]);
if(x+1<=p) addline(id[x][y][z],id[x+1][y][max(1,z-d)],inf),addline(id[x+1][y][min(r,z+1+d)],id[x][y][z+1],inf);
if(x-1) addline(id[x][y][z],id[x-1][y][max(1,z-d)],inf),addline(id[x-1][y][min(r,z+1+d)],id[x][y][z+1],inf);
if(y+1<=q) addline(id[x][y][z],id[x][y+1][max(1,z-d)],inf),addline(id[x][y+1][min(r,z+1+d)],id[x][y][z+1],inf);
if(y-1) addline(id[x][y][z],id[x][y-1][max(1,z-d)],inf),addline(id[x][y-1][min(r,z+1+d)],id[x][y][z+1],inf);
}
}
printf("%d\n",dinic(S,E));
return 0;
}
}
int main(){return LarjaIX::maid();}
bzoj3144 [HNOI2013]切糕(最小割)的更多相关文章
- BZOJ3144[Hnoi2013]切糕——最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- 【BZOJ-3144】切糕 最小割-最大流
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1261 Solved: 700[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- BZOJ3144 [Hnoi2013]切糕 【最小割】
题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...
随机推荐
- ☆☆如何学习MATLAB☆☆
大多数朋友第一次接触MATLAB一般都是在大学里面开设的MATLAB课程,第一次真正使用MATLAB是在自己的毕业论文中用到.所以对于MATLAB可以说是既爱又恨.爱,是因为使用MATLAB几乎可以实 ...
- Solution -「洛谷 P3911」最小公倍数之和
\(\mathcal{Description}\) Link. 给定 \(\{a_n\}\),求: \[\sum_{i=1}^n\sum_{j=1}^n\operatorname{lcm}(a ...
- CentOS7防火墙firewall
一.Firewall 1. 从CentOS7开始,默认使用firewall来配置防火墙,没有安装iptables(旧版默认安装). 2. firewall的配置文件是以xml的格式,存储在 /usr/ ...
- ajax读本地文件
前置条件: 1. 编辑器,我用的是HbuilderX,解压即食,非常美味,点击传送门. 2. jQuery.min.js,点击传送门. 简单的项目目录: a. test.html内容 <!DOC ...
- Windows系统散列值获取分析与防范
LM Hash && NTLM Hash Windows操作系统通常使用两种方法对用户的明文进行加密处理,在域环境中,用户信息存储在ntds.dit中,加密后为散列值.Windows操 ...
- 【Windows身份认证】NTLM
前言 前几天自己在学习域渗透时突然对Windows的身份认证机制产生了兴趣,但看了好几天自己还是懵懵懂懂,期间自己看了许多师傅的优质文章,也做了一些例子的复现,于是有了这篇文章,可以说是自己的笔记或总 ...
- MSBuild 和项目文件
Microsoft 生成引擎(MSBuild)项目文件位于生成和部署过程的核心. 本主题以 MSBuild 和项目文件的概念性概述开头. 它介绍了在处理项目文件时将遇到的关键组件,并通过一个示例来演示 ...
- linux设置 自定义脚本开机启动
本文原创,转载请标明出处 https://blog.csdn.net/qq2531246791/article/details/89036084 一. 赋予可执行权限 chmod +x /etc/rc ...
- idea教程--使用maven创建web项目
1.单击create new project 2.运行maven项目 在pom.xml文件中添加tomcat插件然后如下图运行;
- gdb调试快速入门
编译指令 gcc test.c -o test -g -g是加入调试信息,加入源码信息 启动gdb调试 gdb test 进入gdb中 设置参数 set args 10 20 显示参数show age ...