Paper Title

Real-time Attention Based Look-alike Model for Recommender System

Basic algorithm and main steps

Basic ideas

RALM is a similarity based look-alike model, which consists of user representation learning and look-alike learning. Novel points: attention-merge layer, local and global attention, on-line asynchronous seeds cluster.

1. Offline Traning

1. User Representation Learning

Treat it as multi-class classification that chooses an interest item from millions of candidates.

(1) Calculate the possibility of picking the $ i$-th item as a negative example

$ p(x_i) = \frac{log(k+2)-log(k+1)}{log(D+1)} $

$ D $: the max rank of all the items( rank by their frequency of appearance.)

$ k $: the rank of the $ i$-th item.

(2) Negative sampling: ample in a positive/negative proportion of 1/10

(3) Embedding layer

$ P(c=i|U,X_i) = \frac{e^{x_i u}}{\sum \limits_{j \in X}e^{x_j u}} $

the cross entropy loss : $ L = -\sum \limits_{j \in X} y_i log P(c=i|U,X_i) $

$ u $: a high-dimensional embedding of the user

$ x_j $: embeddings of item $ j $

$ y_i \in {0, 1} $: the label

When converge, output: the representation of user interests.

(4) Attention merge layer

Learn user-related weights for multiple fields.

\(n\) fields are embedded with the same length \(m\) as vector \(h \in R^m\), and then concatenate them in dimension 2, resulting a matrix \(H \in R^{n×m}\). Next, compute weights:

$ u = tanh(W_1H) $

$ w_i = \frac{e{W_2u_iT}}{\sum_j^n e{W_2u_jT}} $

\(W_1 \in R^{k×n}\) and \(W_2 \in R^k\) : weight matrix , \(k\) size of attention unit,

$ u \in R^n$ :the activation unit for fields, \(a ∈ R^n\) weights of fields.

Merge vector $ M \in R^m : M = aH $

Then take it as the input of the MLP layer and get universal user embedding.

2. Look-alike Learning

(1) Transforming matrix.

$ n \times m $ to $ n \times h $

(2) Local attention

To activate local interest / mine personalized info.

$ E_{local_s} = E_s softmax(tanh(E_s^T W_l E_u)) $

\(W_l \in R^{h \times h}\) : the attention matrix,

\(E_s\) : seen user $ E_u $: target user

Note: Firstly, cluster the seed users through K-means algorithm into k clusters, and for each cluster , calculate the average mean of seeds vectors.

(3) Global attention

$ E_{global_s} = E_s softmax(E_s^T tanh(W_g E_s)) $

(4) Calculate the similarity between seeds and target user

$ score_{u,s} = \alpha \cdot cosine(E_u,E_{global_s}) + \beta \cdot cosine(E_u, E_{local_s}) $

(5) Iterative training

2. Online Asynchronous Processing

Update seeds embedding database in real-time . It includes user feedback monitor and seeds clustering.

3. Online Serving

$ score_{u,s} = \alpha \cdot cosine(E_u,E_{global_s}) + \beta \cdot cosine(E_u, E_{local_s}) $

Motivation

  • The "Matthew effect" becomes increasingly evident in recent recommendation systems. Many competitive long-tail contents are

    difficult to achieve timely exposure because of lacking behavior

    features .
  • Traditional look-alike models which widely used in on-line

    advertising are not suitable for recommender systems because of

    the strict requirement of both real-time and effectiveness.

Contribution

  • Improve the effectiveness of user representation learning. Use the attention to capture various fields of interests.
  • Improve the robustness and adaptivity of seeds representation learning. Use local and global attention.
  • Realize a real-time and high-performance look-alike model

My own idea

Relations to what I had read

  • Method of concatenating feature fields. In other paper about CTR I had read, different feature fields

    are concatenated directly. It will cause overfitting in strongly-relevant fields(such as interested tags) and underfitting in to weakly-relevant fields(such as shopping interests) . Then it leads to a result that the recommended results are determined by the few strongly-relevant fields. Such models can not learn comprehensively on multi-fields features, and will lack diversity of recommended results. But in this paper, it uses attention merge to learn effective relations among different fields of user features.
  • Besides, it uses high-order continuous features instead of categorical features. In my opinion, if we use low-order categorical features to express the user group, we can only use statistical methods to construct the features, which will lose most of the information of the group. However, the higher-order continuous features after presentation learning actually contain the intersections of various lower-order features of users, which can more comprehensively express the information of users. Moreover, the higher-order features are generalized to avoid the expression of memory trapped in historical data.

Shortcomings and potential change I assume

  • In this paper, it seems that only a few features are used to learn representation, which may limits the effect in some extends.

【DM论文阅读杂记】推荐系统 注意力机制的更多相关文章

  1. CAP:多重注意力机制,有趣的细粒度分类方案 | AAAI 2021

    论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源 ...

  2. 推荐系统中的注意力机制——阿里深度兴趣网络(DIN)

    参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不 ...

  3. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  4. [论文阅读]阿里DIEN深度兴趣进化网络之总体解读

    [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...

  5. 自然语言处理中的自注意力机制(Self-attention Mechanism)

    自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...

  6. 深度学习之注意力机制(Attention Mechanism)和Seq2Seq

    这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制. ...

  7. Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译

    前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutor ...

  8. AAAI2018中的自注意力机制(Self-attention Mechanism)

    近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年 ...

  9. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  10. TensorFlow从1到2(十)带注意力机制的神经网络机器翻译

    基本概念 机器翻译和语音识别是最早开展的两项人工智能研究.今天也取得了最显著的商业成果. 早先的机器翻译实际脱胎于电子词典,能力更擅长于词或者短语的翻译.那时候的翻译通常会将一句话打断为一系列的片段, ...

随机推荐

  1. 【随笔记】NDK 编译开源库 jsoncpp

    下载并解压源码 wget https://github.com/open-source-parsers/jsoncpp/archive/refs/tags/1.9.4.tar.gz -O jsoncp ...

  2. Java JDK1.5: 泛型 新特性的讲解说明

    Java JDK1.5: 泛型 新特性的讲解说明 每博一文案 听到过这样一句话:"三观没有标准.在乌鸦的世界里,天鹅也有罪." 环境.阅历的不同,造就了每个人独有的世界观.人生观. ...

  3. logback日志输出到mongodb

    1.继承UnsynchronizedAppenderBase package com.xf.config; import java.util.Map; import org.springframewo ...

  4. 在Flask中构建API接口的相关概念

    在Flask中构建API接口的相关概念 重定向行为 斜杠 以下两个路由的不同之处在于是否使用尾部的斜杠. 第一个路由的URL尾部有一个斜杠,看起来就像一个文件夹,访问一个没有斜杠结尾的URL时,Fla ...

  5. Vue14 条件渲染

    转:https://blog.csdn.net/weixin_57519185/article/details/121168426 1 简介 通过指令v-show和v-if可以实现条件渲染. 它们都能 ...

  6. docker05-dockerfile

    1.dockerfile是什么 Dockerfile是用来构建Docker镜像的构建文件,是由一系列命令和参数构成的脚本.可以理解为docker自己的语言编写的脚本. 2.Dockerfile内容基础 ...

  7. .NET WebAPI 跨域问题(has been blocked by CORS policy:No Access-Control-Allow-Ogigin header is present on the requested resource)

    一.什么是跨域 1. 跨域解释 跨域指的是浏览器不能执行其他网站的脚本.它是由浏览器的同源策略造成的,是浏览器施加的安全限制. 同源指的是:域名,协议,端口均相同. 2. 什么情况下会导致跨域 2.1 ...

  8. P20_事件绑定

    事件绑定 什么是事件 事件是渲染层到逻辑层的通讯方式.通过事件可以将用户在渲染层产生的行为,反馈到逻辑层进行业务的处理. 小程序中常用的事件 事件对象的属性列表 当事件回调触发的时候,会收到一个事件对 ...

  9. Android  JetPack~ LiveData (一)   介绍与使用

    一般情况下LiveData都是搭配这ViewModel使用,这里先介绍一下LiveData,再结合ViewModel使用 Android数据绑定技术一,企业级开发 Android数据绑定技术二,企业级 ...

  10. SpringCloud 源码学习笔记2——Feign声明式http客户端源码分析

    系列文章目录和关于我 一丶Feign是什么 Feign是一种声明式. 模板化的HTTP客户端.在Spring Cloud中使用Feign,可以做到使用HTTP请求访问远程服务,就像调用本地方法一一样的 ...