「vijos-bashu」lxhgww的奇思妙想(长链剖分)
倍增离线,预处理出爹和孙子们。查询\(O(1)\)
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <algorithm>
#include <iostream>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define MP make_pair
#ifdef QWQ
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define D_e_Line cerr << "\n--------\n"
#define D_e(x) cerr << (#x) << " : " << x << endl
#define C_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define TIME() fprint(stderr, "TIME : %.3lfms\n", (double)clock() / (double)CLOCKS_PER_SEC)
#include <cassert>
#else
#define FileOpen()
#define FileSave()
#define D_e_Line
#define D_e(x)
#define C_e(x)
#define Pause()
#define TIME()
#endif
struct FastIO {
template<typename ATP> inline FastIO & operator >> (ATP & x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
if(f == -1) x = -x;
return *this;
}
} io;
using namespace std;
template<typename ATP> inline ATP Max(ATP x, ATP y) {
return x > y ? x : y;
}
template<typename ATP> inline ATP Min(ATP x, ATP y) {
return x < y ? x : y;
}
template<typename ATP> inline ATP Abs(ATP x) {
return x > 0 ? x : -x;
}
#include <vector>
const int N = 3e5 + 7;
vector<int> D[N], U[N];
struct Edge {
int nxt, pre;
} e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
}
int n;
int f[N][21], dep[N], md[N], len[N], son[N], top[N];
inline void DFS_First(int u, int father) {
f[u][0] = father, md[u] = dep[u] = dep[father] + 1;
R(i,1,19){
if(f[u][i - 1]) f[u][i] = f[f[u][i - 1]][i - 1];
else break;
}
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
DFS_First(v, u);
if(md[v] > md[son[u]]) son[u] = v, md[u] = md[v];
}
}
void DFS_Second(int u, int Tp) {
top[u] = Tp, len[u] = md[u] - dep[Tp] + 1;
if(!son[u]) return;
DFS_Second(son[u], Tp);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != f[u][0] && v != son[u])
DFS_Second(v, v);
}
}
int H[N];
inline void Init() {
int now = 0;
R(i,1,n){
if(!(i & (1 << now))) ++now;
H[i] = now;
}
R(i,1,n){
if(i == top[i]){
for(register int j = 1, u = i; j <= len[i] && u; ++j) u = f[u][0], U[i].push_back(u);
for(register int j = 1, u = i; j <= len[i] && u; ++j) u = son[u], D[i].push_back(u);
}
}
}
inline int Query(int u, int K) {
if(K > dep[u]) return 0;
if(!K) return u;
u = f[u][H[K]], K ^= (1 << H[K]);
if(!K) return u;
if(dep[u] - dep[top[u]] == K) return top[u];
if(dep[u] - dep[top[u]] < K) return U[top[u]][K - dep[u] + dep[top[u]] - 1];
return D[top[u]][dep[u] - dep[top[u]] - K - 1];
}
int main() {
io >> n;
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
}
DFS_First(1, 0);
DFS_Second(1, 1);
Init();
int lst = 0, Q;
io >> Q;
while(Q--){
int u, K;
io >> u >> K;
u ^= lst, K ^= lst;
printf("%d\n", lst = Query(u, K));
}
return 0;
}

「vijos-bashu」lxhgww的奇思妙想(长链剖分)的更多相关文章
- [vijos]lxhgww的奇思妙想(长链剖分)
题意 题目链接 Sol 长链剖分 又是一个用各种花式技巧优化的暴力 它的主要思想是:对于每个节点,把深度最深的子节点当做重儿子,它们之间的边当做重边 这样就会有一些非常好的轻质 所有链长总和是\(O( ...
- lxhgww的奇思妙想 长链剖分板子
https://vijos.org/d/Bashu_OIers/p/5a79a3e1d3d8a103be7e2b81 求k级祖先,预处理nlogn,查询o1 //#pragma GCC optimiz ...
- 「vijos」lxhgww的奇思妙想(长链剖分)
传送门 长链剖分的板子(又是乱搞优化暴力) 对于每一个点,我们定义它深度最深的子节点为它的重儿子(为什么不叫长儿子……),他们之间的连边为重边 然后长链剖分有几个性质 1.总链长为$O(n)$ 2.一 ...
- 【Vijos】lxhgww的奇思妙想(长链剖分)
题面 给定一棵树,每次询问一个点的\(k\)次祖先,强制在线. Vijos 题解 长链剖分. 链接暂时咕咕咕了. 现在可以戳链接看题解了 #include<iostream> #inclu ...
- Vijos.lxhgww的奇思妙想(k级祖先 长链剖分)
题目链接 https://blog.bill.moe/long-chain-subdivision-notes/ http://www.cnblogs.com/zzqsblog/p/6700133.h ...
- 2019.01.06 vijos lxhgww的奇思妙想(长链剖分)
传送门 长链剖分模板题. 题意简述:允许O(nlogn)O(nlog_n)O(nlogn)预处理,让你支持O(1)O(1)O(1)查找任意一个点的kkk级祖先. 思路:因为要O(1)O(1)O(1) ...
- 【COGS2652】秘术「天文密葬法」(长链剖分,分数规划)
[COGS2652]秘术「天文密葬法」(长链剖分,分数规划) 题面 Cogs 上面废话真多,建议直接拉到最下面看一句话题意吧: 给个树,第i个点有两个权值ai和bi,现在求一条长度为m的路径,使得Σa ...
- 「WC2010」重建计划(长链剖分/点分治)
「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 ...
- 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)
LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...
随机推荐
- 『忘了再学』Shell基础 — 26、cut列提取命令
目录 1.cut命令说明 2.cut命令练习 (1)cut命令基本用法 (2)cut命令选取多列 (3)按字符来进行提取 (4)按指定分隔符进行截取数据 3.cut命令分隔符说明 1.cut命令说明 ...
- FlinkSQL源码阅读-schema管理
在Flink SQL中, 元数据的管理分为三层: catalog-> database-> table, 我们知道Flink SQL是依托calcite框架来进行SQL执行树生产,校验,优 ...
- NODE.JS exports require理解
node.js exports 的作用是什么? 因为A.js文件想访问B.js文件中的类或函数,是不能直接访问的.为了解决这个问题 node.js 产生了 exports ,exports 实际可以理 ...
- C# List转String的办法
2022年5月28日 初始记录 代码: String.Join(",", List.ToArray());
- markdown常用到的语法
一.标题 后加文字,几个#代表几级标题,最高为6 ,标准语法一般在#后跟个空格再写文字. 二.分割线 三个或者三个以上的 - 或者 * 三.图片 格式:  A ...
- redis击穿,穿透,雪崩,分布式锁,api(jedis,luttuce)
击穿:(redis做缓存用,肯定发生了高并发,到达数据库查询) 设置key 的过期时间,过期后没有这个key,找不到了,就穿过了(其中一个key过期导致并发访问数据库) LRU (LRU,即:最近最少 ...
- 上线项目之局域网上线软件使用-----phpStudy
上面的图片是phpStudy的软件截图.那么你在哪里会下到呢?链接: https://pan.baidu.com/s/1lvX9jY_K6gGkMOqo76p4nA 提取码: h1it 复制这段内容后 ...
- C++ 炼气期之数组探幽
1. 数组概念 变量是内存中的一个存储块,大小由声明时的数据类型决定. 数组可以认为是变量的集合,在内存中表现为一片连续的存储区域,其特点为: 同类型多个变量的集合. 每一个变量没有自己的名字. 数组 ...
- Windows下MySQL的安装和删除
Windows下MySQL的安装和删除 安装Mysql 1 下载mysql 地址 2 安装教程 2.1配置环境变量 变量名:MYSQL_HOME 变量值:D:\software\programming ...
- DotNET程序员面向API编程的正确姿势
原文:https://blog.csdn.net/u013201439/article/details/49981071 补充:按照步骤成功加载文档后,选择索引可以快速发现相关的内容,如图