CF1615G Maximum Adjacent Pairs
\(CF1615G\)
Description
给定一个数列 \(a\),你需要将所有 \(a_i=0\) 的位置填上一个 \(1\sim n\) 的正整数,使得数列的「值」最大。
数列的值定义为满足以下条件的 \(k\) 的个数:
- 存在 \(i\in\Z[1,n-1]*i*∈Z[1,*n*−1]\),使得 \(a_{i}=a_{i+1}=k\)。
输出值最大的序列,若有多解,输出任意一个。
\(0\le a\le \min(n,600)\);\(0<n\le 3\times 10^5\)
Solution
转化到匹配问题是比较直觉的?
一开始的错误思路是直接对于每个数匹配位置,会出现这种情况
\(01000020\),直接匹配的话可能会出现,\(01100220\),最优匹配显然是\(11000022\)
那么考虑我们初始状态是一段连续的非\(0\)和\(0\)拼接而成,我们考虑进行连续段匹配
比较显然的几个结论
长度为偶数的 \(0\) 段,两边都匹配或者两边都不匹配,是肯定不劣的
长度为奇数的 \(0\) 段,只有一边匹配或者不匹配,也是不劣的
那么对于这个模型建图:
长度偶数段:左右端点连边,左右边界分别和左右端点连边
长度奇数段:左右边界和区间连边
跑一遍最大匹配就好了,由于是一般图,带花树(复杂度稳定过不去)\(/\)随机匈牙利(直接踩过去)
#define Eternal_Battle ZXK
#include<bits/stdc++.h>
#define MAXN 300005
using namespace std;
int match[MAXN],vis[MAXN],a[MAXN],Lim=600,Tim,n;
mt19937 my_rd(time(0));
vector<int>rd[MAXN];
map<int,int>py[605];
bool No[MAXN];
void add(int u,int v)
{
if(No[u]||No[v]) return ;
rd[u].push_back(v);
rd[v].push_back(u);
}
bool dfs(int now)
{
shuffle(rd[now].begin(),rd[now].end(),my_rd);
vis[now]=Tim;
for(int i=0;i<rd[now].size();i++)
{
int y=rd[now][i];
if(vis[match[y]]==Tim) continue;
int z=match[y];
match[now]=y;
match[y]=now;
match[z]=0;
if(!z||dfs(z)) return true;
match[now]=0;
match[y]=z;
match[z]=y;
}
return false;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<n;i++)
{
if(a[i]==a[i+1]) No[a[i]]=true;
}
No[0]=true;
for(int i=1,j=0;i<=n;i++)
{
if(a[i])
{
if(j+1==i) goto EB;
else if((i-j)%2==1)
{
Lim++;
add(a[j],Lim); py[a[j]][Lim]=j+1;
add(a[i],Lim+1); py[a[i]][Lim+1]=i-1;
add(Lim,Lim+1);
Lim++;
}
else
{
Lim++;
add(a[j],Lim); py[a[j]][Lim]=j+1;
add(a[i],Lim); py[a[i]][Lim]=i-1;
}
EB:;
j=i;
}
}
for(int T=1;T<=3;T++)
{
for(int i=1;i<=Lim;i++)
{
if(!match[i]) Tim++,dfs(i);
}
}
for(int i=1;i<=600;i++)
{
if(!match[i]||No[i]||!py[i][match[i]]) continue;
a[py[i][match[i]]]=i;
No[i]=true;
}
int num=1;
for(int i=1;i<=n;i++)
{
if(a[i]) continue;
while(No[num]) num++;
if(!a[i]&&!a[i+1])
{
a[i]=a[i+1]=num;
i++;
}
else
{
a[i]=num;
}
num++;
}
for(int i=1;i<=n;i++)
{
cout<<a[i]<<" ";
}
}
CF1615G Maximum Adjacent Pairs的更多相关文章
- Design and Analysis of Algorithms_Brute Froce
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- 多校3-Magician 分类: 比赛 2015-07-31 08:13 4人阅读 评论(0) 收藏
Magician Time Limit: 18000/9000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
- 去除reads中的pcr 重复,fastquniq
改编: python ~/tools2assemble/run_fastuniq.py SHT-3K-1_1.fq.gz SHT-3K-1_2.fq.gz 好像不支持gz文件,要先解压 http:// ...
- 2015 多校联赛 ——HDU5316(线段树)
Fantasy magicians usually gain their ability through one of three usual methods: possessing it as an ...
- 2018.07.08 hdu5316 Magician(线段树)
Magician Problem Description Fantasy magicians usually gain their ability through one of three usual ...
- HDU 5316——Magician——————【线段树区间合并区间最值】
Magician Time Limit: 18000/9000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- Neon Intrinsics各函数介绍
#ifndef __ARM_NEON__ #error You must enable NEON instructions (e.g. -mfloat-abi=softfp -mfpu=neon) t ...
- hdu 5316 Magician 线段树
链接:http://acm.hdu.edu.cn/showproblem.php? pid=5316 Magician Time Limit: 18000/9000 MS (Java/Others) ...
- D3js-API介绍【英】
Everything in D3 is scoped under the d3 namespace. D3 uses semantic versioning. You can find the cur ...
随机推荐
- Sentinel介绍与使用 收藏起来
点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 项目源码地址:公众号回复 sentinel,即可免费获取源码 前言 在家休息的的时候,突然小勇打 ...
- layui数据表格搜索
简单介绍 我是通过Servlet传递json给layui数据表格模块,实现遍历操作的,不过数据量大的话还是需要搜索功能的.这是我参考网上大佬代码写出的搜索功能. 实现原理 要实现搜索功能,肯定需要链接 ...
- 关于我学git这档子事
创建本地分支并切换到该分支 git checkout -b *** 相当于如下2个命令: git branch *** git checkout *** 推送本地开发分支到远程开发分支 git pus ...
- mmdetection源码阅读
2021-11-23号更新 mmdetection中的hook函数 参考: 重难点总结: # step1: 根据官方文档,getattr(self,'name')等同于self.name # sept ...
- 微信小程序使用echarts遇到的问题
问题1:ec-canvas出现上下滑动页面会漂移 解决方法:在标签内加 force-use-old-canvas="true" 问题2:echarts的tooltip会超出边界 解 ...
- Docker容器:将带UI的程序直接转为Web应用,so easy
摘要:使用Docker容器,将带UI的程序,直接转换为Web应用.很方便,跟大家分享一下. 本文分享自华为云社区<使用Docker容器,将带UI的程序,直接转为Web应用>,作者:tsjs ...
- 移动云使用 JuiceFS 支持 Apache HBase 增效降本的探索
作者简介: 陈海峰,移动云数据库 Apache HBase 开发人员,对 Apache HBase.RBF.Apache Spark 有浓厚兴趣. 背景 Apache HBase 是 Apache H ...
- Flink中如何实现一个自定义MetricReporter
什么是 Metrics 在 flink 任务运行的过程中,用户通常想知道任务运行的一些基本指标,比如吞吐量.内存和 cpu 使用情况.checkpoint 稳定性等等.而通过 flink metric ...
- VS Code官方插件集与工具
如果您也使用VS Code作为CabloyJS项目开发的主编辑器,那么可以参考官方使用的插件集,此外也提供了一些周边工具 这是官方亲测可用的最简插件集,再也不必东奔西走了 插件集 插件名称 用途 Vi ...
- vue虚拟dom和diff算法
vue的虚拟dom和diff算法 1.虚拟dom 虚拟dom,我的理解就是通过js对象的方式来具体化每一个节点,把dom树上面的每个节点都变为对象里的一个元素,元素的子元素变为子节点,节点上面的cla ...