在上一章《驱动开发:内核LDE64引擎计算汇编长度》中,LyShark教大家如何通过LDE64引擎实现计算反汇编指令长度,本章将在此基础之上实现内联函数挂钩,内核中的InlineHook函数挂钩其实与应用层一致,都是使用劫持执行流并跳转到我们自己的函数上来做处理,唯一的不同的是内核Hook只针对内核API函数,但由于其身处在最底层所以一旦被挂钩其整个应用层都将会受到影响,这就直接决定了在内核层挂钩的效果是应用层无法比拟的,对于安全从业者来说学会使用内核挂钩也是很重要。

挂钩的原理可以总结为,通过MmGetSystemRoutineAddress得到原函数地址,然后保存该函数的前15个字节的指令,将自己的MyPsLookupProcessByProcessId代理函数地址写出到原始函数上,此时如果有API被调用则默认会转向到我们自己的函数上面执行,恢复原理则是将提前保存好的前15个原始字节写回则恢复原函数的调用。

原理很简单,基本上InlineHook类的代码都是一个样子,如下是一段完整的挂钩PsLookupProcessByProcessId的驱动程序,当程序被加载时则默认会保护lyshark.exe进程,使其无法被用户使用任务管理器结束掉。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "lyshark_lde64.h"
#include <ntifs.h>
#include <windef.h>
#include <intrin.h> #pragma intrinsic(_disable)
#pragma intrinsic(_enable) // --------------------------------------------------------------
// 汇编计算方法
// --------------------------------------------------------------
// 计算地址处指令有多少字节
// address = 地址
// bits 32位驱动传入0 64传入64
typedef INT(*LDE_DISASM)(PVOID address, INT bits); LDE_DISASM lde_disasm; // 初始化引擎
VOID lde_init()
{
lde_disasm = ExAllocatePool(NonPagedPool, 12800);
memcpy(lde_disasm, szShellCode, 12800);
} // 得到完整指令长度,避免截断
ULONG GetFullPatchSize(PUCHAR Address)
{
ULONG LenCount = 0, Len = 0; // 至少需要14字节
while (LenCount <= 14)
{
Len = lde_disasm(Address, 64);
Address = Address + Len;
LenCount = LenCount + Len;
}
return LenCount;
} // --------------------------------------------------------------
// Hook函数封装
// -------------------------------------------------------------- // 定义指针方便调用
typedef NTSTATUS(__fastcall *PSLOOKUPPROCESSBYPROCESSID)(HANDLE ProcessId, PEPROCESS *Process); ULONG64 protect_eprocess = 0; // 需要保护进程的eprocess
ULONG patch_size = 0; // 被修改了几个字节
PUCHAR head_n_byte = NULL; // 前几个字节数组
PVOID original_address = NULL; // 原函数地址 KIRQL WPOFFx64()
{
KIRQL irql = KeRaiseIrqlToDpcLevel();
UINT64 cr0 = __readcr0();
cr0 &= 0xfffffffffffeffff;
__writecr0(cr0);
_disable();
return irql;
} VOID WPONx64(KIRQL irql)
{
UINT64 cr0 = __readcr0();
cr0 |= 0x10000;
_enable();
__writecr0(cr0);
KeLowerIrql(irql);
} // 动态获取内存地址
PVOID GetProcessAddress(PCWSTR FunctionName)
{
UNICODE_STRING UniCodeFunctionName;
RtlInitUnicodeString(&UniCodeFunctionName, FunctionName);
return MmGetSystemRoutineAddress(&UniCodeFunctionName);
} /*
InlineHookAPI 挂钩地址 参数1:待HOOK函数地址
参数2:代理函数地址
参数3:接收原始函数地址的指针
参数4:接收补丁长度的指针
返回:原来头N字节的数据
*/
PVOID KernelHook(IN PVOID ApiAddress, IN PVOID Proxy_ApiAddress, OUT PVOID *Original_ApiAddress, OUT ULONG *PatchSize)
{
KIRQL irql;
UINT64 tmpv;
PVOID head_n_byte, ori_func; // 保存跳转指令 JMP QWORD PTR [本条指令结束后的地址]
UCHAR jmp_code[] = "\xFF\x25\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"; // 保存原始指令
UCHAR jmp_code_orifunc[] = "\xFF\x25\x00\x00\x00\x00\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"; // 获取函数地址处指令长度
*PatchSize = GetFullPatchSize((PUCHAR)ApiAddress); // 分配空间
head_n_byte = ExAllocatePoolWithTag(NonPagedPool, *PatchSize, "LyShark"); irql = WPOFFx64(); // 跳转地址拷贝到原函数上
RtlCopyMemory(head_n_byte, ApiAddress, *PatchSize);
WPONx64(irql); // 构建跳转 // 1.原始机器码+跳转机器码
ori_func = ExAllocatePoolWithTag(NonPagedPool, *PatchSize + 14, "LyShark");
RtlFillMemory(ori_func, *PatchSize + 14, 0x90); // 2.跳转到没被打补丁的那个字节
tmpv = (ULONG64)ApiAddress + *PatchSize;
RtlCopyMemory(jmp_code_orifunc + 6, &tmpv, 8);
RtlCopyMemory((PUCHAR)ori_func, head_n_byte, *PatchSize);
RtlCopyMemory((PUCHAR)ori_func + *PatchSize, jmp_code_orifunc, 14);
*Original_ApiAddress = ori_func; // 3.得到代理地址
tmpv = (UINT64)Proxy_ApiAddress;
RtlCopyMemory(jmp_code + 6, &tmpv, 8); //4.打补丁
irql = WPOFFx64();
RtlFillMemory(ApiAddress, *PatchSize, 0x90);
RtlCopyMemory(ApiAddress, jmp_code, 14);
WPONx64(irql); return head_n_byte;
} /*
InlineHookAPI 恢复挂钩地址 参数1:被HOOK函数地址
参数2:原始数据
参数3:补丁长度
*/
VOID KernelUnHook(IN PVOID ApiAddress, IN PVOID OriCode, IN ULONG PatchSize)
{
KIRQL irql;
irql = WPOFFx64();
RtlCopyMemory(ApiAddress, OriCode, PatchSize);
WPONx64(irql);
} // 实现我们自己的代理函数
NTSTATUS MyPsLookupProcessByProcessId(HANDLE ProcessId, PEPROCESS *Process)
{
NTSTATUS st;
st = ((PSLOOKUPPROCESSBYPROCESSID)original_address)(ProcessId, Process);
if (NT_SUCCESS(st))
{
// 判断是否是需要保护的进程
if (*Process == (PEPROCESS)protect_eprocess)
{
*Process = 0;
DbgPrint("[lyshark] 拦截结束进程 \n");
st = STATUS_ACCESS_DENIED;
}
}
return st;
} VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint("驱动已卸载 \n"); // 恢复Hook
KernelUnHook(GetProcessAddress(L"PsLookupProcessByProcessId"), head_n_byte, patch_size);
} NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark.com \n"); // 初始化反汇编引擎
lde_init(); // 设置需要保护进程EProcess
/*
lyshark.com: kd> !process 0 0 lyshark.exe
PROCESS ffff9a0a44ec4080
SessionId: 1 Cid: 05b8 Peb: 0034d000 ParentCid: 13f0
DirBase: 12a7d2002 ObjectTable: ffffd60bc036f080 HandleCount: 159.
Image: lyshark.exe
*/
protect_eprocess = 0xffff9a0a44ec4080; // Hook挂钩函数
head_n_byte = KernelHook(GetProcessAddress(L"PsLookupProcessByProcessId"), (PVOID)MyPsLookupProcessByProcessId, &original_address, &patch_size); DbgPrint("[lyshark] 挂钩保护完成 --> 修改字节: %d | 原函数地址: 0x%p \n", patch_size, original_address); for (size_t i = 0; i < patch_size; i++)
{
DbgPrint("[byte] = %x", head_n_byte[i]);
} Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}

运行这段驱动程序,会输出挂钩保护的具体地址信息;

使用WinDBG观察,会发现挂钩后原函数已经被替换掉了,而被替换的地址就是我们自己的MyPsLookupProcessByProcessId函数。

当你尝试使用任务管理器结束掉lyshark.exe进程时,则会提示拒绝访问。

参考文献

https://www.docin.com/p-1508418694.html

驱动开发:内核层InlineHook挂钩函数的更多相关文章

  1. [内核驱动] miniFilter 内核层与应用程序通信

    转载:http://blog.csdn.net/heyabo/article/details/8721611 转载:http://www.cnblogs.com/ljinshuan/archive/2 ...

  2. Windows驱动开发-内核常用内存函数

    搞内存常用函数 C语言 内核 malloc ExAllocatePool memset RtlFillMemory memcpy RtlMoveMemory free ExFreePool

  3. windows 驱动开发 MDL 内核层 用户层共享内存

    参考资料 https://blog.csdn.net/wdykanq/article/details/7752909 http://blog.51cto.com/laokaddk/404584 内核层 ...

  4. Windows内核安全与驱动开发

    这篇是计算机中Windows Mobile/Symbian类的优质预售推荐<Windows内核安全与驱动开发>. 编辑推荐 本书适合计算机安全软件从业人员.计算机相关专业院校学生以及有一定 ...

  5. 《天书夜读:从汇编语言到windows内核编程》五 WDM驱动开发环境搭建

    (原书)所有内核空间共享,DriverEntery是内核程序入口,在内核程序被加载时,这个函数被调用,加载入的进程为system进程,xp下它的pid是4.内核程序的编写有一定的规则: 不能调用win ...

  6. Linux驱动开发必看详解神秘内核(完全转载)

    Linux驱动开发必看详解神秘内核 完全转载-链接:http://blog.chinaunix.net/uid-21356596-id-1827434.html   IT168 技术文档]在开始步入L ...

  7. 用Visual studio2012在Windows8上开发内核驱动监视线程创建

    在Windows NT中,80386保护模式的“保护”比Windows 95中更坚固,这个“镀金的笼子”更加结实,更加难以打破.在Windows 95中,至少应用程序I/O操作是不受限制的,而在Win ...

  8. 用Visual studio2012在Windows8上开发内核驱动监视进程创建

    在Windows NT中,80386保护模式的“保护”比Windows 95中更坚固,这个“镀金的笼子”更加结实,更加难以打破.在Windows 95中,至少应用程序I/O操作是不受限制的,而在Win ...

  9. Android HAL层与Linux Kernel层驱动开发简介

    近日稍微对Android中的驱动开发做了一些简要的了解. HAL:Hardware Abstract Layer 硬件抽象层,由于Linux Kernel需要遵循GPL开源协议,硬件厂商为了保护自己硬 ...

随机推荐

  1. Ceph 块存储 创建的image 映射成块设备

    将创建的volume1映射成块设备 [root@mysql-server ceph]# rbd map rbd_pool/volume1 rbd: sysfs write failed RBD ima ...

  2. HCIA-Datacom 3.3 实验三:以太网链路聚合实验

    实验介绍 随着网络规模不断扩大,用户对骨干链路的带宽和可靠性提出越来越高的要求.在传统技术中,常用更换高速率的接口板或更换支持高速率接口板的设备的方式来增加带宽,但这种方案需要付出高额的费用,而且不够 ...

  3. CAD二次开发(.net)优秀网站分享

    Autodesk官方网站 官方帮助文档:AutoCAD 2016 帮助: Managed .NET Developer's Guide (.NET) (autodesk.com) DXF帮助手册:DX ...

  4. 从C过渡到C++——换一个视角深入数组[真的存在高效吗?](2)

    从C过渡到C++--换一个视角深入数组[真的存在高效吗?](2) C风格高效的数组遍历 在过渡到C++之前我还是想谈一谈如何书写高效的C的代码,这里的高效指的是C代码的高效,也就是在不开启编译器优化下 ...

  5. MAC上PKG打包

    pkg是Mac平台上非常常见的一种安装包格式,如果你想要快速将软件制作为pkg文件,就千万不要错过Packages Mac版,Packages Mac版是Mac平台上能够快速为您生成pkg程序包的一款 ...

  6. 【面试题】js实现将excel表格copy到页面

    js实现将excel表格copy到页面 点击打开视频讲解更加详细 其实最核心的技术,还是copy的是我们粘贴板上的数据 就像平常怎么粘贴复制其他的数据一样,只是我们在excel粘贴的是一个表格数据 这 ...

  7. docker学习笔记-常用镜像相关命令

    docker images # 1.使用 [root@iZbp13qr3mm4ucsjumrlgqZ ~]# docker images REPOSITORY TAG IMAGE ID CREATED ...

  8. flink-cdc同步mysql数据到hbase

    本文首发于我的个人博客网站 等待下一个秋-Flink 什么是CDC? CDC是(Change Data Capture 变更数据获取)的简称.核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的 ...

  9. 基于深度学习的文本分类案例:使用LSTM进行情绪分类

    Sentiment classification using LSTM 在这个笔记本中,我们将使用LSTM架构在电影评论数据集上训练一个模型来预测评论的情绪.首先,让我们看看什么是LSTM? LSTM ...

  10. PAT (Basic Level) Practice 1022 D进制的A+B 分数 20

    输入两个非负 10 进制整数 A 和 B (≤230−1),输出 A+B 的 D (1<D≤10)进制数. 输入格式: 输入在一行中依次给出 3 个整数 A.B 和 D. 输出格式: 输出 A+ ...